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1 Preliminaries

1.1 Introduction

Folk theorems shed light on the role of social norms in long-term relationships and
the game-theoretic mechanisms that render such norms sustainable. In their seminal
work, Fudenberg and Maskin (1986) not only delineated conditions under which the
perfect folk theorem applies to infinitely repeated games with perfect monitoring,
but also pointed out inherent limitations of those conditions. Specifically, they noted
that sanctions against an individual player may be hard to implement if the set
of feasible and strictly individually rational payoff profiles is not full-dimensional.
Indeed, as they showed with an example, the conclusion of the folk theorem can fail
in that case. Subsequent work by Abreu et al. (1994) further clarified the role of
the dimensionality assumption for the scope of the perfect folk theorem, highlighting
that effective sanctions presuppose that players’ payoff functions satisfy the NEU
condition, i.e., no two players possess equivalent utility functions. Building on this
observation, Wen (1994) introduced the notion of an effective minimaz value. This
led to a comprehensive version of the folk theorem that applies to all finite stage
games, i.e., even if they do not satisfy NEU.

While these contributions focus on enforcement of cooperation through unsuper-
vised equilibrium play, a complementary line of research examines how the intro-
duction of informational coordination can facilitate the implementation of socially
desirable outcomes. Thus, there has been growing interest in understanding the impli-
cations of assuming that a central entity provides players with additional information
or recommendations for actions. By a mediator, we mean an autonomous device that
communicates confidential messages to the players at each stage, just before decisions

are made (Aumann, 1974, 1987; Forges, 1986; Myerson, 1986). It has been known for



some time that mediation may have an impact on the set of implementable payoffs in
dynamic games. Specifically, coordination between agents who enforce punishments
may strictly lower the utility level to which an opponent can be held (Hart, 1979). In
the theory of infinitely repeated games, this corresponds to an expansion of the set of
penalty payoffs, down to the correlated minimaz value. Along these lines, the Nash
folk theorem (where sequential rationality is not imposed at information sets off the
equilibrium path) extends to settings with mediated play in an essentially straightfor-
ward way (Sorin, 1992, p. 86; Renault and Tomala, 2011). However, to our knowledge,
no corresponding extension of the perfect folk theorem has been established. Indeed,
as pointed out by Sugaya and Wolitzky (2021), combining mediation and sequen-
tial rationality in dynamic games can lead to unexpected pitfalls. For instance, the
revelation principle no longer holds in general for the sequential equilibrium concept.

The present paper takes this observation as motivation to revisit the idea of me-
diation in a framework that remains as close as possible to the standard model of
Fudenberg and Maskin (1986). Our main innovation is the assumption that all pri-
vate messages and internal records are ex-post observable, i.e., publicly revealed at
the end of each stage. Moreover, we assume that the mediator is perfectly informed
about all prior actions and messages, i.e., no input is required. The resulting solution
concept, mediated subgame perfect equilibrium (MSPE), requires Bayes consistency of
beliefs and sequential rationality at all information sets. This approach turns out to
be very well-behaved. In particular, the revelation principle applies. Moreover, there
is an easily computable effective correlated minimax value that allows characterizing
the set of payoffs implementable as an MSPE for sufficiently patient players, in per-
fect analogy to Abreu et al. (1994) and Wen (1994). We show that mediation can
strictly expand the set of implementable payoffs not only in games with more than

two players but also in games with impatient players. We further obtain a straight-



forward extension of Friedman’s (1971) theorem allowing for correlated equilibria as
threat points.

While our key hypothesis, the ex-post observability of messages, departs from the
main thrust of the literature on communication in dynamic games, it has two notable
benefits. First, assuming that mediation is transparent allows us to largely rely on
subgame perfect equilibrium (Selten, 1965) for intuition and to keep explicit modeling
of beliefs (Kreps and Wilson, 1982) at a minimum. Indeed, all private information
in our setup is temporary and related to the mediator’s messages that are disclosed
at the end of each stage. Second, our assumption that the autonomous device must
be “publicly auditable” also has practical appeal: for instance, this principle is com-
monly required in public administration, law enforcement, procurement, and other
hierarchical settings, where it has the potential to improve accountability, reduce
corruption, and foster trust.! Ex-post observability may, however, also result from
inadvertent or opportunistic leaks of confidential information, which have become

harder to prevent in the digital era.>

1.2 Preview of results

The main results of this paper fall into four groups. First, we derive a revelation prin-
ciple (Theorem 1) for our solution concept. The principle says that, without loss of
generality, messages sent by the mediator convey recommendations for each player to
choose a specific pure action, while players are obedient in the sense that they follow
those recommendations (except after recommendations that are sent with zero prob-
ability given the history). Forges (1986) observed that the classic revelation principle

extends with little change to multi-stage games for the Nash equilibrium concept.

'However, we do not examine incentives for the device to keep its promise.
2For an analysis of mechanism design with information leakage, see Hifner et al. (2025).



Indeed, a player who is directly informed about the action she is supposed to choose
at any on-path information set is merely deprived of knowledge that is irrelevant for
her decision. That very same intuition, formalized by Sugaya and Wolitzky (2021), is
the basis of our proof as well. However, the extension requires two novel arguments.
First and foremost, because the canonical device in our setup may be in an informa-
tional state that is more limited than that of the original device (because it cannot
keep internal records), the device computes conditional probabilities to recover the
correct probability distribution for randomized recommendations.® Second, to deal
with subgames that are reached by any (counterfactual) malfunction of the canonical
device, we “reset” the stage counter after such events. Along these lines, we expand
the scope of the revelation principle to reflect sequential rationality in a large class of
repeated games with ex-post transparent mediation.

Next, to prepare the derivation of necessary and sufficient conditions for imple-

mentability of a payoff profile, we introduce the notion of an effective correlated
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minimax value w°r (for player ). To define the concept, one starts from a correlated

action profile o in the stage game and determines the highest payoff that player ¢
could possibly realize in the stage game if either player ¢ herself or some other player

j # 1 with equivalent utility has the discretion to deviate from the recommended

action. Then, minimizing over all « yields w*. This concept relates to existing

cor
(2

concepts in a natural way. In games that satisty NEU, w$°" coincides with player ¢’s

effective independent minimax value (Wen, 1994).5 In games with just two players,

3In Forges (1988, p. 197), the canonical mediator remains connected to the non-canonical device
and, as we explain in Section 6, the same assumption is made in the Forges (1986, Prop. 1). Similarly,
in Sugaya and Wolitzky (2021), the mediator can send confidential messages to its future selves.
Sticking with our transparency assumption, however, we will prohibit such possibilities.

Two players ¢ and j have equivalent utilities if player j’s payoff function is a positive affine
transformation of player i’s payoff function (Abreu et al., 1994).

5 Allowing for games that violate NEU allows us to keep a comprehensive perspective. Moreover,
such games arise naturally when dealing with cartels, criminal organizations, oligarchic elites, and
terrorist organizations, for instance.



ws°" coincides with player i’s correlated minimax value. A major plus compared to
the independent minimax value and the effective independent minimax value is the
fact that w{°" can be conveniently determined by solving a simple linear program.

We go on to derive necessary and sufficient conditions for the implementability
of a payoff profile as an MSPE. We show that a necessary condition for the imple-
mentability of a payoff profile as an MSPE is that each player obtains at least her
effective correlated minimax value (Theorem 2). Notably, the proof of this result
crucially exploits the revelation principle. As for sufficient conditions, we establish a
general perfect folk theorem with ex-post observable mediation (Theorem 3), where
the individual rationality condition again takes the form that the expected payoff for
each player strictly exceeds her effective correlated minimax value. From this general
result, we obtain corollaries for games that satisfy NEU and for two-player games.
These corollaries are natural analogues of results in Abreu et al. (1994) and Fuden-
berg and Maskin (1986, Thms. 1 & 2). The proofs of our sufficient conditions follow
established lines, with one exception. Specifically, given mediation, the reference to
“ultimately dispensable” assumptions, such as the observability of mixed actions, is
not needed. Given that the fully rigorous treatment of such issues is quite demand-
ing (Sorin, 1986; Fudenberg and Maskin, 1991) and dispensing with observability of
mixed strategies in games that violate NEU is a delicate issue (Fudenberg et al.,
2007, Sec. 4.2 and Fn. 10), the ability to avoid these complications is, in our view, an
additional advantage of our approach.

Finally, we offer a discussion, covering various examples and extensions. We show
that an example due to Fudenberg and Maskin (1986, Ex. 3) is robust with respect to
the introduction of mediation and, hence, to the availability of a public randomiza-
tion device. We develop an analogue of Friedman’s (1971) folk theorem allowing for

correlated threats. We show that, for a fixed discount factor, the MSPE can be more



permissive than the subgame perfect equilibrium with public randomization even in
the two-player case. We review an example due to Forges et al. (1986), relating to
the case of weakly individually rational payoff profiles, and note that its implications
also matter in our setup. And we present an example that sheds light on the role of

internal messages in the canonical autonomous device constructed by Forges (1986).

1.3 Related literature

Following the Nash reversion result by Friedman (1971), seminal work on infinitely
repeated games and the folk theorem includes Aumann and Shapley (1976) and Ru-
binstein (1979). The present paper contributes to the “discounted payoffs approach”
that has been reviewed above.®

The idea of mediation in game theory has its origins in the study of correlated
equilibrium (Aumann, 1974, 1987) and communication equilibria in one-shot games
(Myerson, 1982). These fundamental concepts have been extended to extensive-form
games by Forges (1986) and Myerson (1986).” None of those concepts, however,
assumes ex-post observable messages. The closest in spirit to the present paper is
Prokopovych and Smith (2004), who defined the concept of subgame perfect corre-
lated equilibrium. Like the present analysis, players are assumed to condition their
choices on the history of action profiles and their current private recommendation. In
contrast to our assumptions, however, the mediator and players in their model cannot

condition on messages exchanged in prior periods.® Starting with Lehrer (1991) and

6Gossner and Tomala (2020) surveyed the literature. See also Sorin (1992), Mailath and Samuel-
son (2006), and Mertens et al. (2015).

"These and other extensions of correlated equilibrium to dynamic games have been surveyed by
von Stengel and Forges (2008, Sec. 2.4). See also Forges (2020) and Forges and Ray (2024). Solan
and Vieille (2002) studied mediation in stochastic games.

8Interestingly, in their conclusion, Prokopovych and Smith (2004) mention the possibility of
adding confidential messages to the history, yet only as a means to implement public randomiza-
tion effects into their model, and without further elaborating on the implications of making that
assumption.



Matsushima (1991), the role of communication has been studied predominantly in
repeated games with private monitoring (Ben-Porath and Kahneman, 1996; Compte,
1998; Kandori and Matsushima, 1998).7 Sugaya and Wolitzky (2017, 2018) stressed
the role of mediation under perfect monitoring for the determination of the equilib-
rium set under imperfect private monitoring. In Sugaya and Wolitzky (2017), the
mediator can maintain an undisclosed state across periods and coordinate play via
private recommendations without making the punishment phase common knowledge
among the players.'®

The revelation principle for Nash equilibrium in multi-stage games appeared first
in Forges (1986). By comparison, Myerson (1986) assumed sequential rationality
relative to conditional probability systems. Townsend (1988) derived a revelation
principle in a two-stage insurance market. His model is one of pure adverse selection
with ex-post unobservable messages. The mechanism sends internal messages to it-
self, and the second-stage report in the canonical device concerns signals obtained in
both stages (i.e., there is the possibility to “confess”). His solution concept reflects
optimizing behavior in both stages conditioned on beliefs, with posteriors determined
by Bayes’ rule whenever possible. A failure of the revelation principle for trembling-
hand perfect equilibrium was noted by Dhillon and Mertens (1996). Prokopovych
and Smith (2004) obtained a revelation principle for subgame perfect correlated equi-
librium. However, owing to their simpler informational setup, in which messages

exchanged in prior periods are erased from the history, their proof is more straight-

9See also Obara (2009), Cherry and Smith (2010), and Awaya and Krishna (2016).

The literature is divided regarding the plausibility of mediated play. Lehrer (1992, p. 175)
lauded correlated equilibrium as a solution concept “more attractive than Nash equilibrium.” In
line with this positive assessment, the role of third parties, such as trade associations or specialized
consultants, for collusion in oligopolistic markets and bid rigging in auctions has been acknowledged
by a number of contributions (Aoyagi, 2005; Rahman, 2014; Ortner et al., 2024). On the other hand,
Sugaya and Wolitzky (2017, p. 692) decided to “not take a position on the realism of allowing a
mediator.”



forward than ours. The most comprehensive analysis of the revelation principle in
multi-stage games, allowing for both adverse selection and moral hazard, is Sugaya
and Wolitzky (2021). They showed that the communication revelation principle may
fail for sequential equilibrium, whereas it holds for conditional probability perfect
Bayesian equilibrium. In their setting, however, the mediator can send confidential
internal messages to its future self.!’ Makris and Renou (2023) generalized the con-
cept of correlated Bayesian equilibrium (Bergemann and Morris, 2016) to multi-stage
games.

The full-dimensionality condition introduced by Fudenberg and Maskin (1986,
Ex. 3) is not only relevant in the class of games considered in the present paper, but
also in finitely repeated games (Benoit and Krishna, 1985), OLG models (Kandori,
1992; Smith, 1995), and infinitely repeated games with random matching (Deb et al.,
2020). The NEU condition is strictly less stringent (Abreu et al., 1994). Sekiguchi
(2022) pointed out that the conclusion of the perfect folk theorem can be obtained in
games in which all players have equivalent utilities when monitoring is both endoge-
nous and unobservable.

The correlated minimax value appeared in Renault and Tomala (1998, 2011),
Tomala (1999, 2009, 2013), Gossner and Horner (2010), Laclau (2014), and Bavly
and Peretz (2019). It is well-known that communication allows players to depress a
deviator’s payoff below the minimax value (Gossner and Tomala, 2007). Renault and
Tomala (2011, Ex. 2.7 & Thm. 3.1) illustrated the fact that the correlated minimax
value may be strictly lower than the independent minimax value and derived a Nash
folk theorem allowing for correlation. With heterogeneous discounting, the effective

minimax value is not a lower bound for subgame perfect payoffs (Chen, 2008).

Hnterestingly, our informational setup can be replicated in Sugaya and Wolitzky (2021). For this,
the mediator would send carbon copies of all private messages to its future self in the next stage,
who would then disclose those messages to all players. Cf. Section 7.



Relative to this literature, the novelty of the MSPE concept is the combination of

private messaging, sequential rationality, and ex-post transparency.

1.4 Overview

The remainder of this paper is structured as follows. Section 2 introduces infinitely
repeated games with mediation. The revelation principle is established in Section 3.
Section 4 introduces the effective correlated minimax value, while Section 5 derives
necessary and sufficient conditions for MSPE implementability. An example-based
discussion can be found in Section 6. Section 7 concludes. Technical proofs are

relegated to an Appendix.

2 Infinitely repeated games with mediation

This section prepares the main analysis. We first introduce our equilibrium concept

(Section 2.1) and then derive its basic properties (Section 2.2).

2.1 Mediated subgame perfect equilibrium (MSPE)

For a finite set of players N = {1,2,...,n}, let G = {A;, u;}ien be the stage game,
where for each player i € N, A; is the finite set of ¢’s actions, and u; : A = Xien A —
R is i’s payoff function. Let M; be a finite set of messages for player i. At any stage
t €{0,1,2,...}, each player i receives a message m; € M; and subsequently chooses an
action al € A;. A history of length ¢ is a finite sequence ht = (m%,a%...;m!=1 a'=1),
where, for any 7 € {0,...,t — 1}, m™ € M = Xien Mi 1s a profile of messages, and
a” € A is a profile of actions. The set of histories of length ¢ will be denoted by H?,
where h® = @ is the empty history. Let H = [J;2, H' be the set of histories of any

12

length, with typical element h. A device is a mapping p : H — A(M),"* and we

12For any finite set X, we denote by A(X) the set of probability distributions on X.

10



denote by pu(-[h) and pi;(-[h) = >, cpp . p(;m—i| h), respectively, the probability
distributions over m and m; at history h.'* Any pair (h,m;) with a history h € H
and a message m; € M; will be called an information set for player 7. Let I; denote

the set of player ¢’s information sets.

Record updates:

Mediator draws: Players act: P
t t t (m',a’) be-
mb ~ p(-|hY) —_— choose a! —_— .
. . . P comes public
privately sends m! given (h',m})

ht+1 — (ht; mt, at)

Figure 1: Within-stage timing.

The timing within each stage is illustrated in Figure 1. At the beginning of stage
t, the device draws a message profile m' according to u(- | ') and privately sends m/!
to each player i. Players then choose actions a! simultaneously and independently.
Finally, (m!, a') is made public and is appended to the history to form A

For clarity, we repeat our main assumption:
Assumption 1. At each stage t € {0, 1,...},

(i) the device cannot condition its recommendation profile on any information other

than the public record h', and
(ii) each player i’s information consists of h' and the private message m!.

Thus, the device cannot send confidential messages to its future selves (or, in any
case, cannot make use of them), and any private message communicated at some
stage is made public at the end of that stage.

A behavior strategy for player i is a mapping o; : I; — A(A;), with o;(-| h, m;)

denoting the distribution over player i’s action a; € A; at (h,m;) € I;. Let ¥; be

13As usual, the index —i refers to the elements with index j # i. Thus, M_; = )(j;ﬁi M;,

m_; = (mj)j#, etc.

11



the set of player i’s behavior strategies, and let ¥ = X, 3;. Given a device yu and
a profile of behavior strategies o = (01,...,0,) € X, the outcome is the induced
probability distribution over infinite paths {a’}2,. Let § € (0, 1) denote the discount

factor. Then, after normalization, player i’s expected payoff is defined as

(1-9) Z5tui(at)] : (1)

where we suppress the dependence on y for convenience.

Let (h',m!) € I, be an information set for some player i € N. We denote by
Bi(-| ht,mt) € A(M_;) player i’s belief over other players’ messages m_; at (h',mt).
A system of beliefs (5 specifies a mapping (; : I; = A(M_;) for each i € N. We note
that player i’s belief §;(- | ht, m!), the profile of behavior strategies o, and the device
jointly induce a probability distribution over infinite continuation paths {a*7}° .14

Player i’s continuation payoff at (h',m!) is then defined as

U(o |h',ml) =B |(1=6) ) 67u;(a"7) |, (2)
7=0
where we again suppress the dependence on p and f;.

Definition 1. A mediated subgame perfect equilibrium (MSPE) is a triple (u, 3,0)

such that the following two conditions hold:

(i) (Bayes consistency) Players’ beliefs are derived from p via Bayes’ rule whenever

possible, i.e.,
p(mi, m—;i | h)
Bilm_i|h,m;) = —————
pi(ms | h)
for any player ¢ € N, any information set (h,m;) € I; such that p;(m;|h) > 0,

and any profile of messages m_; € M_;.

14For details, see Appendix A.1.
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(ii) (Sequential Rationality) Given the device p and a system of beliefs 3, players’
choices satisfy

UZ’(U ’ h,mz) 2 UZ'(O'I/-,U,i ‘ h,mi),

for any player ¢ € N, any information set (h,m;) € I;, and any deviation

We emphasize that the set of messages M, for each player i is part of the description
of the MSPE rather than being exogenously given.

We will say that a message m; (a message profile m) at history h € H is regular if
pi(mi | h) >0 (if u(m | h) > 0).'® Similarly, a history h* € H' is regular if u(m7™ | h7) >
0 for all 7 € {0,...,t — 1}. Finally, we call an information set (h, m;) € I; regular if
both A and m; are regular.

Keeping the device p fixed, MSPE is outcome-equivalent to sequential equilibrium
(SE). To see this, recall our assumption that the device is not a player but merely
executes moves of Nature. Therefore, SE requires Bayes consistency only at regular
information sets. However, the actions taken at irregular information sets do not
matter for sequential rationality at regular information sets, nor for the outcome of
the game. Hence, for a fixed device, the respective sets of outcomes and payoffs
coincide between SE and MSPE.

The following example illustrates Definition 1.

Ezample 1. Consider the game G! shown in Figure 2. Player 1 chooses rows, player
2 chooses columns, and player 3 chooses matrices. As long as player 1 is obedient,
p(- | h) gives equal weight to (T, R,B1) and (B, L, B;), leading to the payoff profile
(1,1,1). If player 1 deviates, u(- | h) gives equal weight to (T,L,B;) and (T, R, Bs),

Bntuitively, an irregular message m; corresponds to a malfunction of the device that is imme-
diately detectable for player i. In contrast, irregular message profiles need not be immediately
detectable for all players, but will be publicly evident at the beginning of the next stage.

13



leading to the Pareto-inferior payoff profile (0,0, %) For § > %, this describes an

MSPE.16
B, B,
L R L R
2,0,1 4,0,0 T 4,0,0 -2,0,0
B —2,2,2 4,0,0 B 4,0,0 2,0,0

Figure 2: The game G'.

The example shows that an MSPE can be more permissive than subgame perfect
equilibrium (SPE). Indeed, since player 1’s independent minimax value is 2, the Pareto
optimal payoff profile (1, 1, 1) cannot be enforced by an SPE. A public randomization
device does not help because bounding player 1’s payoff to 1 requires that players 2
and 3 receive private messages. One can also check that (1,1,1) is not a correlated

equilibrium payoff of the one-shot game.

2.2 Basic properties of MSPE

Recall that, by definition, a public correlation device makes an independent draw from
the unit interval at the start of each stage ¢ € {0,1,...} (Hart, 1979). The following

lemma collects basic properties of our equilibrium concept.
Lemma 1. The MSPE solution concept has the following properties:
(i) The one-shot deviation principle applies.
(ii) Any payoff vector implementable by an SPE with public randomization for some

d € (0,1), even with observable mized actions, is implementable by some MSPE

for the same discount factor.'”

16 A perfect folk theorem using correlated equilibrium as a threat point can be found in Section 6.
17As we saw in Example 1, the converse is not true in general.

14



(iii) For any (u, 5,0) satisfying Bayes consistency and sequential rationality at all
reqular information sets, there is an outcome-equivalent MSPE ([L,B,&) using

the same message spaces.

(iv) The unconditional repetition of any correlated equilibrium of the stage game G

is an MSPE for any § € (0,1). In particular, an MSPE exists.
Proof. See Appendix A.2. m

By part (i), sequential rationality can be checked by considering deviations at in-
dividual information sets only. Part (ii) is immediate for any SPE without public
randomization, by assuming a trivial message structure (i.e., all message spaces are
singletons). The fact that public randomization, at least in terms of payoffs, can
be replicated by an MSPE requires a proof, however. Indeed, while M is finite,
public randomization admits a continuum of signals. For games in strategic form,
this additional flexibility is without consequence for payoffs by an application of
Carathéodory’s Theorem (e.g., Rockafellar, 1970). Indeed, any distribution over pay-
off profiles induced by a continuum signal can be replaced, without affecting the
expectation, by a distribution over finitely many messages. In the Appendix, we of-
fer a refined argument valid for infinitely repeated games. Part (iii) is particularly
useful in applications because it obviates not only the specification of beliefs in the
description of an MSPE, but also the discussion of irregularities. Since any observable
deviation of the device will be public information from the subsequent stage onward,
it suffices to “reset” the stage counter. This, in turn, allows defining a player’s belief
after a zero-probability message arbitrarily and lets her choose a best response in
the stage game to the opponents’ correlated action profile induced by her belief and
the opponents’ behavior strategies. Part (iv) is now immediate. The set of messages

for a player may even be chosen as the support of the corresponding marginal of

15



the correlated equilibrium, which directly circumvents the need to define beliefs at
information sets that the mediator invokes with probability zero given the history.
Recalling that the stage game admits a correlated equilibrium (Hart and Schmeidler,

1989), one obtains existence.

3 The revelation principle

In this section, we derive a revelation principle for MSPE. This result will, in particu-
lar, be useful for the derivation of necessary conditions for the folk theorem. However,
given the recent findings by Sugaya and Wolitzky (2021), our version of the revelation

principle might also be of independent interest.
Definition 2. An MSPE (y, 8, 0) is called canonical if
(i) M; = A;, for every i € N, and

(ii) for any history h € H and any message m; € M; such that u;(m;|h) > 0, the

mixed action o;(- | h,m;) € A(A;) gives full weight to a; = m;, for any ¢ € N.

The first condition characterizes the device as direct, while the second condition re-
quires all players to be obedient. It should be noted that Definition 2 does not require
player ¢’s obedience in response to a message m; that is sent with probability zero
given the history h.'®

In a canonical MSPE, any history of length ¢ is of the form
ht = (a°a% .. ;4 ath)

where a” € A is the profile of actions recommended to the players, and a” € A is the

profile of actions actually chosen by the players at stage 7, for any 7 € {0,...,t —

8This avoids, in particular, players choosing strictly dominated actions after a malfunction of the
device.
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1}. In particular, in line with the principle of transparency underlying the MSPE
concept, any deviation from the recommended action profile is detectable at the end
of the stage, since both the recommendations and the chosen actions become public

information.

Theorem 1 (Revelation Principle). For any MSPE, there exists an outcome-

equivalent MSPE that is canonical.

Proof. See Appendix A.3. m

Thus, we may always assume w.l.o.g. that, for all players i € N, the set of messages
M, corresponds in a one-to-one fashion to the set of actions A;, and player i’s behavior
strategy o; reflects obedience in the sense explained above.

For mathematical convenience, the proof of Theorem 1 defines the canonical device
directly from the original MSPE. We found it instructive to decompose the construc-

tion conceptually into three steps:

Step 1 First, to move the randomization from the players to the device, the private
message m; for player ¢ is complemented by a recommended action a; € A;. To
ensure sequential rationality and outcome equivalence, the purified device sends
the message profile (m?,a') at a given history with the same probability with
which the combination (m?, a'), with chosen action profile a' = a', arises at the

corresponding history in the original MSPE.

Step 2 Next, a direct device is constructed that sends only the recommended action a;
to each player i. To preserve the law of future recommendations, this device
sends (in a strict generalization of the MSPE concept) the original message
profile m! to its future selves.!” Obedience in the sense defined above is sequen-

tially rational in this setup because (i) players know less, as in Forges (1986),

19 Alternatively, the mediator keeps an “internal record” of the original messages.
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and (ii) obedience remains optimal even if regular and irregular information
sets are merged (because players, looking ahead, assign probability zero to any

malfunction of the device).

Step 3 Finally, the internal messages are dropped. At any regular history, the canon-
1cal device, fully informed about the action profiles recommended and chosen
at all prior stages, but ignorant of the internal messages sent by the direct de-
vice, determines the conditional distribution over those messages and uses it to

replicate the randomized recommendation profile of the direct device.

Step 1 is simple but important. Indeed, without prior purification, the player does
not know her own action (Aumann, 1987, p. 11), so that the information structures
compared by the revelation principle, viz. abstract messages vs. actions, would not
be comparable. The probability consideration in this step is a standard element of
the communication revelation principle (Forges, 1986), and it is formalized in Sugaya
and Wolitzky (2021, App. B).

Step 3 is needed in our framework because the MSPE does not allow the mediator
to keep information undisclosed across stages. Sugaya and Wolitzky (2021, Online
Appendix, pp. 81-87) established a communication revelation principle for finitely
repeated multi-stage games with pure moral hazard. Their framework allows for
undisclosed forms of mediation, however. In particular, the mediator’s messages
in later stages can be based on private information from earlier stages that is not
accessible to the players. In our setting, however, the device cannot condition on
private information that it held in earlier stages. As a result, we cannot make direct

use of Sugaya and Wolitzky (2021, Prop. 4) in our proof of Theorem 1.2

20The subtle role of internal records for the revelation principle for extensive-form correlated
equilibrium (Forges, 1986) is illustrated with an example in Section 6.
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4 Minimax values

We first review various minimax concepts that have been proposed in the literature
(Section 4.1), and then introduce our notion of effective correlated minimax value

(Section 4.2).

4.1 Minimax concepts in the literature

Let G = {A;,u;}ien be an arbitrary finite game. Player i’s independent minimazx

value is defined as

where E,_,[-] denotes the expectation over the action profile a_; € A_; with respect

to the profile of mixed actions a_;. Similarly, player i’s correlated minimax value is

defined as

cor

T = min max B, . [u;(a;,a_;)].

v a_i€A(X 4 Aj) ai€A; ¢
It is clear from the definitions that vf°* < ™ with equality if n = 2. For n > 3
players, however, the ability to correlate mixed actions may allow the opponents of
player i to hold i’s expected payoff strictly below the independent minimax payoft, so
that vf°" < v}™ becomes a possibility (Hart, 1979; Renault and Tomala, 1998, 2011).
This possibility is illustrated also in Example 1.

Recall that two players i, 7 € N have equivalent utilities, formally i ~ j, if there
exist scalars ¢, d such that d > 0 and w;(a) = ¢ + du;(a) for all a € A (Abreu et al.,
1994). Further, G satisfies NEU if no pair of distinct players has equivalent utilities.

Following Wen (1994), let player i’s effective independent minimaz value be defined

as
w™ = min max max E,_[ui(a},a_;)],
a€Xy ey A(Ag) zGN al€A;
s.t. j~i
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where a_; € X, 4 A(Ayg) is derived from the vector a by eliminating the j-th com-
ponent.

ind
A

The value w}™ coincides with the independent minimax value v;*® if G satisfies
the NEU condition. Indeed, the maximization over the equivalence class of player @
is trivial in this case. If G does not satisfy NEU, however, then there may be some
player j ~ ¢ that is able to raise her own and therefore ¢’s utility against the joint
minimax action profile a, so that, in general, only vi*® < wi* can be ascertained.?!
In fact, a well-known example by Fudenberg and Maskin (1986, Ex. 3) shows that
this inequality can be strict if NEU does not hold, i.e., players cannot, in general, be

held down to their independent minimax values in such games.??

4.2 Effective correlated minimax value

In analogy to the development above, we now introduce the following variant of the
correlated minimax value. Let player i’s effective correlated minimax value be defined

as

cor __ : /
wi® = min  max [E,; | max Eolui(d},a—;)|aj]|
acA(A)  jeEN a.€A;
s.t. jri J

where o; denotes the marginal distribution of o on A;, and the inner expectation is

conditional on a;, i.e., on the realization of «;.*> The conditioning on a; in the inner

21For players in an equivalence class, it can be assumed w.l.o.g. that their payoff functions are
identical. In the case n = 2, this has the notable implication that wi*® = wi = max{vi®, v}
(Smith, 1995, p. 427). However, no analogous representation is feasible for n > 3, as follows from
Fudenberg and Maskin (1986, Ex. 3).

22Fudenberg and Maskin (1986) concluded from their example that the dimensionality assumption
cannot be dispensed with in their statement of the perfect folk theorem. Strictly speaking, however,
this conclusion would require showing that, even using a public randomization device, no player
can be held down to v}*®. In Section 6, we show that this is indeed the case for their example (but
not in general).

Z3Here and below, we use the following convention: If the marginal distribution o assigns prob-
ability zero to some action a; € Aj, then the conditional expectation Eq[u;(a}, a—;)| a;] is replaced
by the unconditional expectation Eq[u;(a}, a—;)]. In fact, any alternative convention delivers the
same value for wi°* because the outer expectation gives zero weight to such a;. See the proof of
Lemma A.1 in the Appendix.
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expectation should be intuitive because player j observes a; before choosing af. At
the same time, the members of player ¢’s equivalence class cannot coordinate their
responses, so that unilateral deviations are considered.

The following lemma summarizes the discussion above and complements it by

providing additional inequalities related to the effective correlated minimax value.

Lemma 2. Let G = {A;,u;}ien be an arbitrary finite game, and i € N. Then, the

following holds true:

(i) The minimaz values introduced above satisfy:

(it) If G satisfies NEU, then w™ = vi™ and wr = vf°r.

7 i

(111) If n =2, then vf°" = v and w§™ = wi™.

Proof. See Appendix A.4. m

In part (i), only two inequalities require a proof. The lower horizontal inequality
says that player i’s correlated minimax value is weakly smaller than her effective
correlated minimax value. The intuition is similar to the independent case. Indeed,
the presence of an additional player with equivalent utility can never make it easier
to minimax a given player ¢, even if the minimax profile may be correlated. Next,
the right-hand vertical inequality says that player i’s effective independent minimax
value is weakly larger than its correlated counterpart. This observation captures

the intuition that correlated minimax strategies can be more effective in games with
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three or more players, even against an equivalence class of players. Parts (ii) and
(iii) provide conditions under which the various concepts coincide. These conditions
are very useful in applications. In general, however, the effective correlated minimax

value may differ from the other three minimax concepts, as the following example

illustrates.
F S
F S F S
F | 444 | 0,0,0 F | 0,00 | 0,00
S 0,0,0 0,0,0 S 0,0,0 1,1,1
Figure 3: The game G?.

Ezample 2. For the game G? from Figure 3, we have vj™ = v{ = 0 and wi*® = §.
However, the effective correlated minimax value is given by w{°* = %, and it can be

implemented using the following distribution of action profiles:**

o(F,F.F) = 1—13,

a(F,S,S) = a(S,F,S) =aS,S,F) = &

137

a(ay, as, az) = 0, otherwise.

In less straightforward examples, the computation of the effective correlated minimax
is tremendously simplified by the fact that the minimax problem can be rewritten
as a linear program.?® In contrast, this is not in general feasible for the independent

minimax concepts (because individual minimax probabilities are multiplied if n > 3).

24For further details, see Appendix A.5.
?5Indeed, let u;j(a;) denote player i’s (unconditional) maximal payoff when player j ~ i is supposed
to play a; but may deviate. Further, let U; € R denote the maximum to be minimized. Then, as
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5 Necessary and sufficient conditions

This section first derives conditions necessary for a payoff profile to be implementable

as an MSPE (Section 5.1), and then various sufficient conditions (Section 5.2).

5.1 Necessary conditions

Using the concepts introduced above, we can derive the following necessary conditions

for MSPE implementability.

Theorem 2 (Necessary Conditions). If U;(c) is player i’s expected payoff under an
MSPE (SPE), then Uy(o) 2 wi™ (Ui(o) = wi™).

Proof. See Appendix A.6. m

The bracketed claim, due to Wen (1994), is based on the intuition that player i’s

ind
%

payoff cannot be depressed strictly below w:™® if either player i herself or some other
player j # i with equivalent utility can avert this outcome. The proof of the non-
bracketed part of Theorem 2 requires an additional step. Specifically, one notes that,
by the revelation principle, the mediator may w.l.o.g. be assumed to send messages
in the form of pure action recommendations. Therefore, the stage payoff of the “most

fortunate deviator” boils down to the effective correlated minimax value.

follows from Eq. (A.2) in the Appendix,

Wi = min U;
o, {u;}j~i, Ui
st. ae A(A)
uj(aj) > Z oz(aj,a_j)ui(a;,a_j) V] ~ i, Vaj,a;- S Aj
a_j;EA_;
Ui > Z uj(aj) VJ ~ 1.
aj;€EA;
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5.2 Sufficient conditions

We define, as usual, the set of feasible payoff profiles V' as the convex hull of {u(a) =
(ui(a),...,up(a)) : a € A}. The following result is a comprehensive folk theorem for

the MSPE concept.

Theorem 3. Let v € V be such that v; > wf* (v; > w*) for all i € N. Then,
there is some 0 € (0,1) such that for all § € (0,1), there exists an MSPE (SPE with
observability of mized actions®®) in the infinitely repeated game in which player i’s

expected payoff is v;, for all i € N.
Proof. See Appendix A.7. m

The proof of Theorem 3 follows the steps of the corresponding result for SPE, which is
stated above in brackets (Wen, 1994, Thm. 2). The obvious change in the statement of
the result is that the effective independent minimax value is replaced by the effective
correlated minimax value.

There is another distinction, however. To derive sufficient conditions for the folk
theorem under perfect monitoring, Wen (1994) imposed simplifying assumptions that
(i) players have access to a public randomization device, and that (ii) mixed actions
are ex-post observable. While a follow-up paper (Wen, 2002) argued that these as-
sumptions are ultimately dispensable for sufficiently patient players, the correspond-
ing proofs are somewhat deep and spread out over multiple papers. Indeed, to replace
public and private randomizations by deterministic sequences of pure actions, three
techniques are employed. First, a time-averaging argument is used to represent arbi-

trary feasible payoff profiles as discounted averages of pure-strategy outcomes (Sorin,

26The MSPE concept does not assume that mixed actions are observable. However, as pointed
out by Fudenberg et al. (2007, Fn. 10), the sufficient conditions in Wen (1994) crucially depend on
that assumption. We therefore make this dependence explicit in the bracketed case.
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1986). Second, cycling over action profiles is used to keep incentives from one-shot de-
viations small (Fudenberg and Maskin, 1991). Third and finally, a form of long-term
accounting is used to make players truly indifferent between pure actions during the
minimax phase (Fudenberg and Maskin, 1986, Sect. 6). While, to our understanding,
all of these arguments are important and reflect considerations that arise similarly in
real-world applications, the bulk of the literature has preferred to make simplifying
assumptions instead. Indeed, as pointed out by Fudenberg et al. (2007, Fn. 10), the
sufficient conditions in Wen (1994) crucially depend on the observability of mixed
actions. Allowing for ex-post transparent mediation circumvents this complication.
In particular, the reference to simplifying assumptions is absent from our proof of the
non-bracketed part of Theorem 3.%7

The following version of the folk theorem with mediation is an analogue of Abreu

et al. (1994, Thm. 1).

Corollary 1. Suppose that NEU holds. Then, any v € V' such that v; > v$°* (v; >
vi*) for all i € N is an MSPE (SPE) payoff profile in the infinitely repeated game

when players are sufficiently patient.

Proof. According to Lemma 2(ii), NEU implies w{°* = v£°". The non-bracketed claim

i _=

is therefore immediate from Theorem 3. The bracketed claim is Abreu et al. (1994,

Thm. 1). m

Finally, we turn to two-player games. Mediation does not essentially affect the set of

SPE payoffs in two-player games in the limit as § — 1.

Corollary 2. Suppose that n = 2. Then, anyv € V such that v; > v;*® fori € {1,2}

is an MSPE (an approximate SPE) payoff profile in the infinitely repeated game when

2"Mediation also avoids pitfalls that have been identified in the use of public randomization in
asymmetric settings (Olszewski, 1998) and in limits (Yamamoto, 2010).
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players are sufficiently patient.

cor

Proof. We prove the non-bracketed case first. By Lemma 2(iii), we know that wf°* =

i =

wi™, for i € {1,2}. If G satisfies, in addition, the NEU condition, then w}*® = v},

)

for i € {1,2}, by Lemma 2(ii), and the claim is immediate from Theorem 3. If G

violates NEU, then we may assume w.l.o.g. that u; = usy, so that wi*™® = wi* =

max{vj™, vi"} (see Fn. 21). Since feasibility implies v; = v,, the claim holds in this
case as well. In sum, we have established the non-bracketed claim.?® The bracketed

claim is Fudenberg and Maskin (1991, Prop. 2) for n = 2. O

6 Discussion

This section collects additional results and clarifications. Section 6.1 revisits the
full-dimensionality counterexample of Fudenberg and Maskin (1986, Ex. 3). Sec-
tion 6.2 develops a folk theorem based on correlated threats. Section 6.3 illustrates
that, for a fixed discount factor, private recommendations can substitute for patience.
Section 6.4 revisits the example of Forges et al. (1986), related to strict individual
rationality. Finally, Section 6.5 comments on the role of internal messages in the

revelation principle for extensive-form correlated equilibrium.

6.1 The example of Fudenberg and Maskin (1986)

Consider the game G? shown in Figure 4. If two players decide to choose different

ind __
i

pure actions, then the payoff of the third player is held down at zero. Hence, v

v$°r = 0, for each player i € N.

)

Lemma 3. For the game G2, we have w = %, for eachi € N.

i =

28 Alternatively, by Fudenberg and Maskin (1986, Thm. 1), any v € V satisfying the conditions
of the corollary can be implemented as an SPE with public randomization and observable mixed
actions if players are sufficiently patient. Then, the non-bracketed claim follows from Lemma 1(ii).
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Proof. See Appendix A.8. O

The fact that wi™ = 1 is due to Fudenberg and Maskin (1986, Ex. 3). In view of

Lemma 2, the statement that w°* = }1 is stronger (but easier to check). It says that,

i
even with mediation, it is not feasible to lower any player’s payoff to less than }l. This

fact has a corollary, which we state separately for clarity.

F S
F S F S
1,1,1 0,0,0 F 0,0,0 0,0,0
S 0,0,0 0,0,0 S 0,0,0 1,1,1

Figure 4: The game G°.

Corollary 3. Fudenberg and Maskin (1986, Ex. 3) is robust with respect to the in-

troduction of a public randomization device.

Proof. By Lemma 1(ii), mediation is more permissive than access to public random-

ization. Therefore, the assertion follows from Lemma 3. O]

Thus, even if public randomization is allowed, the conclusion of the perfect folk
theorem for games with n > 3 players may become invalid if the set of feasible
payoff profiles is of dimension strictly lower than n. Sufficient conditions have often
been presented under the simplifying assumption that players have access to a public
randomization device. Therefore, Corollary 3 closes a potentially important gap in

the literature.

6.2 Correlated threats

As was seen in Example 1, a simple way to construct an MSPE is by using a correlated

equilibrium as a threat point. Generalizing this idea leads to the following extension
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of Friedman’s (1971) perfect folk theorem.

Theorem 4. Let a* € A(A) be a correlated equilibrium (Nash equilibrium) in the
stage game G, with payoff profile u(a*) € R™. Then, any feasible payoff profile that
strictly dominates u(a*) in the Pareto sense, results from an MSPE (SPE) for §

sufficiently close to one.
Proof. See Appendix A.9. O

Since the set of correlated equilibria can be strictly larger than the convex hull of the
Nash equilibria, a correlated threat can be more effective than a Nash threat even in

a two-player game. This fact is illustrated by our next example.

L C R

T 1,1 1,0 —3,-2
0,-3 | —-1,—-1 2,0
B | 2-1 0,-2 0,0

Figure 5: The game G*.

Ezample 3. Consider the game G* in Figure 5. Suppose that, on the equilibrium
path, the mediator recommends (T,L) at every stage, yielding the payoff profile
v = (1,1). After any deviation by any player, the mediator switches permanently to

the correlated equilibrium o* € A(A) defined by
o (T, C) = 3, o (M,C) = 3, o (M,R) = 3.

The correlated equilibrium implements the payoff profile (%, —%) Hence, we have an

MSPE for all § > %.
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Notably, v = (1,1) cannot be enforced by a Nash threat. Indeed, the stage game has

the unique Nash equilibrium (M, R), with payoff profile (2, 0).%
6.3 The role of the discount factor

For n = 2 players, our necessary and sufficient conditions imply that the respective
limiting sets, as 0 — 1, of strictly individually rational payoffs implementable by an
MSPE or SPE coincide. For a fized discount factor, however, private messages can

matter, as our next example shows.

R P S
R 0,0 0,2 2,0
P 2,0 0,0 0,2
S 0,2 2,0 0,0

Figure 6: The game G°.

Ezample 4. Consider the game G® in Figure 6. Let a* denote the correlated equi-
librium in which each non-tied outcome receives weight %. Then, the unconditional
repetition of o* is an MSPE for any § € (0, 1), implementing the payoff profile (1,1).

However, if § is too small, then (1, 1) is not implementable as an SPE.?

In the example, the MSPE outcome cannot be replicated using an SPE with public
randomization. The reason is that, without private messages, at least one player can
perfectly predict the other player’s action, which makes it hard to deter a deviation

driven by short-term considerations.

Gince G* is a two-player game and v = (1,1) is strictly individually rational, v can be imple-
mented by some SPE. Without observable mixed actions, however, such an SPE may be complicated.

309Tndeed, achieving a total payoff of 2 makes it imperative to avoid any ties. Therefore, at any
history on the equilibrium path, at least one player chooses a pure action. But then one of the
players has a one-shot deviation gain of at least % For § < i, that deviation cannot be deterred in
any SPE.
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6.4 Weak vs. strict individual rationality

This section revisits an example that has been used to explain why sufficient condi-

tions for folk theorems commonly require strict individual rationality for all players.

Example 5. Consider the game G° shown in Figure 7. The payoff profile v = (1,0, 0) is

feasible by alternating between (F,F,F) and (S, S, S). Moreover, v;* = vi*? = pind =

0. However, v is not implementable as an SPE (even with public randomization).?!

F S
F S F S
1, 1,—1 | 0, 0, 0 0,0,0 | 0,0 0
0,0,0 | 0,0 0 0,0, 0 | 1,—1, 1

Figure 7: The game G°.

Turning to the possibility of mediation, the very same arguments show that v{°* = 0
for i € {1,2,3} and that (1,0,0) cannot be implemented as an MSPE either. The
consideration of effective minimax values is unnecessary as a consequence of Lemma
2(ii) because G° satisfies NEU. Thus, mediation does not obviate the need for the

strictness assumption.

6.5 On the revelation principle for extensive-form correlated
equilibrium

A novel element of our proof of the revelation principle is the idea that the canonical

mediator speculates in a Bayesian fashion about the messages that the original device

has sent in prior stages. To clarify our contribution, this section elaborates on the

revelation principle for extensive-form correlated equilibrium. In Forges (1986), the

3lIndeed, if a1 = a3 = F (a; = az = S) is anticipated with positive probability at some stage,
then player 2 (player 3) could realize a strictly positive payoff by choosing as = F (a3 = S) in the
first such stage, and choosing her weakly dominant action in all subsequent stages.
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use of a canonical device can be assumed w.l.o.g. because players interacting with
it receive less information, and therefore have fewer ways to deviate. The original
proof does not explicitly discuss the point, however, that also the device receives
less information if replaced by its canonical version. In the example below, the non-
canonical device proposes one of two mixed Nash equilibria in the first stage. Since
the two equilibria have identical support, the information regarding the equilibrium
recommendation is partly lost when the players receive direct messages containing
only information about their pure choices. A canonical device without an internal
record might then lack sufficiently precise information to make recommendations in
the same way as in the non-canonical setup. The example captures the intuitive idea
that multiple selves of the device are “connected.” The example thereby illustrates
the fact that the mediator’s ability to communicate with itself (Sugaya and Wolitzky,
2021) is, a priori, stronger than the assumption that future selves merely have access

to messages sent in prior periods (Forges, 1986).

Example 6. There are n = 3 players and two stages ¢ = 1,2. Players 1 and 2 make
their choices at stage t = 1, while player 3 makes her choice at stage ¢ = 2. There are
no moves of Nature. Neither player 3 nor the device can observe the choices made
at stage t = 1 by players 1 and 2. Payoffs in the resulting two-stage G” are given in

Figure 8.

Consider the following extensive-form correlated equilibrium:

e At stage t = 1, the device sends messages e; and ey with equal probability.

These messages are observed only by players 1 and 2.

e Upon observing ey, players 1 and 2 play (%T + %B, %L - %R), which is a Nash

equilibrium between the two players if player 3 chooses E;.
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L R L R
T | 1,20 | 0,0,0 T | 2,1,0 | 0,0,12
B | 0,012 | 21,0 B | 0,00 | 1,2,0
E;
L R
T | —-1,-1,0 | —1,-1,9
B | -1,-1,9 | —1,-1,0

Figure 8: The two-stage game G”.

e Upon observing e, players 1 and 2 play (%T + %B, %L + %R), which is a Nash

equilibrium between the two players if player 3 chooses E,.

e At stage t = 2, the device recalls its earlier message (either e; or e;) and informs
player 3 accordingly. Player 3 chooses E; if the message is e, and E, if the
message is eo. This is optimal for her if players 1 and 2 adhere to their strategies,

because 12 - % >9. g.

This equilibrium is not canonical. In a canonical equilibrium, players 1 and 2 are
merely informed at stage t = 1 about their recommended pure actions. Suppose that
internal messages are prohibited. Then the stage-2 device knows only which of the
four pairs (T,L), (T,R), (B,L), and (B,R) it recommended at stage ¢ = 1. The
respective probability distributions over pairs (aj, as) are shown in Table I.

By definition, a canonical device cannot give a recommendation to player 3 at stage
t = 1, because player 3 moves only at stage ¢ = 2. But if the device does not inform
player 3 at all, player 3 finds it optimal to choose Eg, breaking the equilibrium. Thus,

without internal records, the canonical device needs to apply Bayes’ rule to come up
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with the correct conditional probabilities for recommending actions to player 3.

(a) Conditional on ey (b) Conditional on eg (c) Aggregate
'L R 'L R 'L R
2 1 2 4 2 5
T |35 3 T |35 3 T 1§ 1
4 2 1 2 5 2
Bl 3§ 3 Bl 3 3§ B | % 3

Table I: Stage-1 recommendation probabilities.

7 Concluding remarks

We have proposed a simple and tractable solution concept that naturally generalizes
correlated equilibrium to the class of infinitely repeated games. MSPE aligns very well
with subgame perfection, public randomization, and sequential equilibrium, satisfies
an important revelation principle, suggests a natural variant of the effective minimax
value, and leads to straightforward analogues of classic folk theorems. There is no
need to assume that mixed actions are observable. Moreover, necessary and sufficient
conditions for implementability of payoffs apply to any finite stage game.

Key takeaways include that private messaging makes minimax punishments not
only more effective, as has been known before, but also simpler, sequentially rational,
and less reliant on players’ patience. Thus, transparent mediation can benefit players
who rely on the cooperation of others. As we have also seen, this observation extends
in a nontrivial way to situations in which players share equivalent utilities.??

What happens if the requirement of ex-post observability is dropped? Intuition
suggests that our sufficient conditions generalize because, as mentioned before, the

mediator can always commit to disclosing all internal records and private messages

32There are actually two more takeaways. First, the full-dimensionality example in Fudenberg
and Maskin (1986) is robust to the introduction of a public randomization device, which closes a
small but long-standing gap in the literature. Second, internal records kept by the mediator might
play a more important role for the analysis of mediation than suggested by the existing literature.
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at the beginning of the next stage. However, the implications of secrecy for necessary
conditions are less clear. Since a new stage does not necessarily start a new subgame,
there would be some leeway for the mediator to steer players’ subjective beliefs over
past and current message profiles. This might allow the mediator to punish more

effectively, in particular, in games that do not satisfy NEU.

A Appendix
This Appendix contains material omitted from the body of the paper.

A.1 The outcome of mediated play

Given a device p and a profile of behavior strategies o, an infinite sequence {(m!, a*)}2,
of message and action profiles is determined as follows. Recall that the initial history
is h° = @. Tteratively, for any t € {0,1,2,...}, draw the message profile m' € M
according to p(-|h'), draw af according to o;(- | ht,mt), for each player i € N, and
construct the updated history h* = (hf;m?, a’) = (m°,a%...;m! a'). From the in-
finite sequence {(m', a*)}2,, the outcome {a'}22, is obtained by omitting the message
profiles.

Next, fix some player i € N, an information set (h,m;) € I;, with h = h* € H",
and a belief §;(-|h,m;) € A(M_;) at (h,m;). The infinite continuation sequence
{(m™7 a’™7)}22, of message and action profiles is determined as follows. First,
let m{ = m;, draw m'; € M_; according to f;(- | h,m;), and draw a} according to
(-] h,m5), for any player j € N. This determines the pair (m',a’), and the history
Rttt = (ht;mt at). Tteratively, for any 7 € {1,2,...}, draw m*™ € M according to
w(-| A7), draw a?” according to o; (- | A'*7, m;”), for each j € N, and construct the
history AT = (BT m!*7 a'*7). The conditional outcome {a'*t7}>° is obtained

again from the infinite sequence {(m'*7, a"*7)}>2, by omitting the messages.
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A.2 Proof of Lemma 1

(i) Fix the device u, a player i € N, and the profile of opponents’ behavior strategies
o_; € ¥_;. Then, at any information set (h,m;) € I;, player i faces a discounted
decision problem. By the standard one-shot deviation principle (Fudenberg and Ti-
role, 1991), if some deviation o} yields a strictly higher continuation payoff at (h, m;),
there exists a profitable deviation that differs from o; only at a single information
set. Thus, to verify the sequential rationality condition in Definition 1, it suffices to

check one-shot deviations.

(i) Let 6* € [0,1] denote the public signal drawn in stage ¢ € {0,1,...}. Focus
on stage t = 0. For any signal #° € [0,1], the SPE in the repeated game in-
duces a payoff profile V(6°) = (V1(6°),...,V,(6°)) € R™. Let V° = {V(6°)]6° €
[0,1]} € R™ denote the set of payoff profiles obtained that way. Then, the SPE
payoff profile V* = (V*,..., V) = E[V(6°)] is an element of the convex hull of V°.
Thus, by Carathéodory’s Theorem (Rockafellar, 1970, Thm. 17.1), there are signals
69,...,0°, , €1[0,1] and weights Ay, ..., \py1 > 0 with S7F1 A, = 1, such that

n+1

V=D Vo),

k=1
for all i € N. Hence, we may replace the public randomization device at stage t =
0, without affecting expected continuation payoffs or sequential rationality at stage
t =0, by an autonomous device using identical sets M; = ... = M, ={1,...,n+ 1}
and sending the message profile (k,...,x) € M with probability A,. This defines
an infinitely repeated game G° in which the public randomization device has been
replaced by a finite device at stage t = 0. Applying the same reduction iteratively for
any history h!, we can construct, for any horizon 7' > 1, an infinitely repeated game

G" in which the public randomization device has been replaced by a finite device in
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all stages t < T'. Consider now the limit game G°°, in which this replacement has
been done at all stages, and the corresponding limit strategy profile. We need to
check that no player has an incentive to deviate in G*. Suppose that a one-shot
deviation in G* is profitable at some stage t. Given boundedness of payoffs, the
respective continuation payoffs resulting from equilibrium play and deviation in G*
are arbitrarily close to the corresponding continuation payoffs in G7, as T — oo.
Hence, we can find a horizon 7' > t such that the same deviation is profitable in G7,

which is impossible. Thus, a deviation is not profitable.

(iii) For any regular history h € H, let fi(-|h) = u(-|h). For any irregular history
h € H, there is a first stage at which the irregularity becomes public information.
Exploiting the stationary nature of the infinitely repeated game, the device is then
programmed to “reset” itself by erasing the irregular initial segment of its history. If
necessary, this procedure is repeated until all inconsistencies are resolved. Formally,
for any history h' € H, we define the last “reset” stage 7(t) = 7(h') recursively as
follows. Let 7(0) = 0. Further, for ¢t > 0, let 7(¢t + 1) = 7(¢) if appending (m!, a*) to
the history

RART = (m™®a™®; . mt L atY) € HTO),

creates a regular history h*1\h™® and let 7(¢t + 1) = t + 1 otherwise, in which case
RHI\RTHD = &, In the MSPE that we construct, the device, beliefs, and strategies
are evaluated at the regular history h*\h7®") rather than at the original history h‘.
Formally, we define a new device fi : H — A(M) by ji(-| ht) = p(- | h\R™®), for all
h' € H. Similarly, for each player i € N and any message m} such that fi;(m} | h*) > 0,
let &;(-| ht,ml) = o;(- | R\R™® m!). Further, at any information set (h*,m!) with

fis(mt | hY) = 0, choose f;(- | h',m!) arbitrarily and let &;(-| ht,m!) place probability

(2

one on some pure best response to the correlated action profile a_; € A(A_;) induced
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by Bi(- | ht,mt) € A(M_;) and the profile of behavior strategies #_; in the stage game.
Finally, define beliefs f; at information sets with fi;(m! | h') > 0 by Bayes’ rule from
it. Noting that, after any zero-probability message for some player, the next stage
“resets” the history to @ regardless of the player’s action, it is now immediate from

the construction that (f, B, ) is an MSPE that is outcome equivalent to (u, 3, o).

(iv) Let a* € A(A) be a correlated equilibrium in the stage game G. To define an
MSPE, let player i’s message set be given as M; = suppa; C A;, for each i € N.
Next, let p(-|h) = a*(-) for any h € H. For any player i € N and information
set (h,m;) € I;, define the belief §;(- | h,m;) € A(M_;) by Bayes’ rule. Further, let
oi(-| h,m;) € A(A;) give full weight on m;. Then, sequential rationality for player i
at the information set (h, m;) follows directly from the optimality condition for player

7 in the correlated equilibrium «o*. The existence claim is now immediate. l

A.3 Proof of Theorem 1

Take an arbitrary MSPE (u, 3, o). For any history ht = (m®,a%;...;m!"! a'™1) € HY,
define the joint distribution over message and action profiles (- |h') € A(M x A)
induced at h! by
a(m',a | W) = p(m' | 1Y) - T[] oual | b, m}).
ieN

Further, let fi,(-|h) € A(A) and (- |h) € A(M; x A;), respectively, denote the
marginals of fi(-|h) on A and M; x A;. Let H' be the set of canonical histories of
length ¢, with typical element A' = (a% a%...;a'", a’™1), and let S* be the set of
states of length ¢, with typical element s* = (m® ..., m'!). Conditioning on the
public action record (a’,...,a'"!) contained in the canonical history th, Bayesian

uncertainty concerns only the latent message history s'. Keeping this in mind, the

probability that the canonical history h! € H' and the state s' € S obtain jointly is

37



given by the product

pr(ht,st) = Hﬁ(mT,&T|hT),

771’ a‘rfl

where h7 = (m°,a%...;m ) is the corresponding history of length 7, built
from s™ and the record of chosen actions contained in h’. Moreover, the probability
that A’ obtains is

> il

stesSt
while the probability that A! and a' obtain jointly is

pr(ht,a') = Y pr(h',s") fa(a'| 1Y),
test

where h' is derived from s’ and k' as explained above. We specify a direct MSPE

~

candidate (i, 5,6) as follows. For any k' € H' with pr(h!) > 0, and any ' € A, let

pr(ht, at)
pr(ht)

If pr(ht) = 0, define (- | ht) arbitrarily. For each i € N, define beliefs (- | ht, )

At ') =

by Bayes’ rule from ji whenever fi;(al|h') > 0, and choose §; arbitrarily otherwise.
Further, define &;(- | h', at) to put full weight on a; = a!. We verify sequential ratio-
nality, we may restrict attention to one-shot deviations at regular information sets.
Fix a canonical information set (hf,af) for some player i+ € N. Similar to the above,

consider joint probabilities
pr(5t7 mga iLt? df) = pr(st, iLt)/j’Z(mf | ht)dz(&f | htv mD’

pr(ht,al) = Z Z pr(st, mt, ht,al).

st€St mieM;

Assume that the information set (h!,a!) is regular, i.e., that pr(hf,af) > 0. Then,
conditional on (h!,at), player i’s posterior pr(- | hf,at) € A(S* x M;) over the latent
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state s and the current message m! is given by

pr(s’,mi| if,af) =
Then, from the definition of the continuation outcome (cf. Section A.1),
U(a|htal) = > > pr(s',ml |, al) Us(o | b, ms).
steSt mte M;
Let &/ denote the one-shot deviation that chooses a, € A; at (h,af) and coincides
with &; thereafter. With o) defined analogously at (hf, m!), we obtain
U (61, 6_; | ht,ab) = Z Z pr(s,mt | ht,al) Ui(o), o—; | ht,mb).
steSt mte M;

t : ~t
mi) > 0, so choosing a!

Now, whenever pr(s’,m! | ht,af) > 0, we have oy(al | At
does not affect the continuation payoff at (h*, m!). Sequential rationality of (u, 5, 0)
implies

Ui(oi,o—i | h',m;) > Ui(o},0-; | ', m7),
for any h' and any m!. Averaging with respect to the posterior pr(- | ht,a 5), we obtain

Ui(67,6_; | ab) > Ui(6),6_; | ht, ab).

Thus, (f, B,c}) is indeed sequentially rational at all regular information sets. We
check outcome equivalence. By definition, (| fALt) follows exactly the distribution
of the recommendation a' obtained from ji once the message history s’ is integrated
out. Hence the stochastic process of recommended action profiles {a'};>¢ induced
by [i coincides with the process of action profiles generated by p and o. Under
obedience, a' = a' for all t on the equilibrium path, so the outcome is indeed the
same as under (i, 8,0). By Lemma 1(iii), there exists an outcome-equivalent MSPE.

By construction, that MSPE is direct and reflects obedience to any regular message.

O
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A.4 Proof of Lemma 2

cor
1 )

(i) The inequality v}** < w}™® is immediate from the definitions. To prove vf°* < w

let v € A(A). Then, since ~ is reflexive,

max Eq[u;(a}, a_;)| as]| (A1)

E,, | max Ea[ui(a;,a_iﬂai]} < max E,; |n
i ajEAj

aleA jJEN
s.t. j~i

i 7

where «; denotes the marginal distribution of a on A;, as before. Next, keeping
a; € A; fixed, the conditional distribution of a_; is certainly an element of A(A_;).?3

Hence,

cor
%

!/ . , B
gleaji Eoui(a;,a_)|a;] > &ﬁg&ii)geaﬁ Es  [ui(al,a_;)] = v

Taking the expectation with respect to «; yields

Eo, |max Eo[ui(aj, a—)| ;] | = 0f*"

alcA;

Combining this with (A.1) and subsequently taking the minimum over all a € A(A)
shows that, indeed, w$°* > v$°*. This proves the horizontal inequalities. As for the

ind
7

ind
A

vertical inequalities, v{°" < v;™¢ is again obvious. To prove that w°" < w;", note

that for any product distribution a € X, _,, A(Ax) and any a} € A;,
Eolui(a}, aj)| a;] = Ea_,[us(a}, ay)],
because a_; is independent of a;. Therefore,

cor

max ]Ea[ui(a;,a_j)’ aj]]

w;” = min  max [E,,
acA(A) JEN alEA;
s.t. gt
< min max E,, [max E,_ [u(a],a;)]
aexkENA(Ak) gGN G;-EAJ'
s.t. jevi

33In line with our earlier convention (see Fn. 23), this conditional distribution is the marginal on
A_; if «; assigns probability zero to a;.
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= min max max B, [u;(a],a_;)]
aEXkENA(A’“)Sgej-\Li ajEA;

o ind
=w; -,

which proves the claim.

(ii) If G satisfies NEU, player i’s equivalence class is a singleton. Hence,

w;.nd. _ min max max E@_j [ui(a;,&fj)]
aEX e N A(Ag) ]GN . a;GAj
s.t. g~i
— min max E, ,[u;(a;, a_;)]
aEX e N A(Ayg) afieAi
= ’U:.i'nd

7

1nd

Hence, wi™ = , as has been claimed. Similarly,

wi*® = min  max B, | max Eu[u;(a),a_;) |a4]
aeA(A) JEN aj €A
s.t. j~i

= min E,, [max Eo[ui(a;, a_;) |ai]} )
acA(A) ai€A;

Let a®F € A(A;) attain vf°%, ie., maxyea, Eaer[ui(aj,a_;)] = vf°F. Select some

&; € A(4;), and define the product distribution o = &; ® a°®F € A(A). Then, the

marginal of o on A; is a; = &;. Therefore,

a,€A; al€A;

0" = Eg, | max Egeor [ul(ag,a_i)]} = E,, {max Eo|ui(a;, a_;) |a;]
Taking the minimum over all @ € A(A) shows that wf°" < vf°r. Together with part

(1), this yields wf™ = vger.

(iii) For n = 2, v}™ = 0T is obvious. We claim that w/*® = wf°*. By part (i), it

suffices to show wg* > wi*. Note that

E,, | max Eq[u J(a,a—j)a;]| > maxE,, []Ea[uz(a a_j)|a]]]

) 9
a;- EAj J a; EA]' J

a;EA]
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for any o € A(A) and any j € N. Taking first the maximum over all 7 € N such
that j ~ ¢ and, subsequently, the minimum over all « € A(A) on both sides yields
wi®® > min max max E,_;[u;(a},a_;)].

! T a€eA(A) JEN dleA;
st. i 7

But, since n = 2, a_; is just a mixed action, so that the RHS equals

ind

min max max Eq_[u;(a),a_;)] = w;

(a17a2)€A(A1)><A(A2) ]‘E].V.CLQGAJ‘
s.t. g~

This establishes the last part and, hence, the lemma. 0

A.5 Details on Example 2

To determine the non-effective minimax values, suppose that player 2 chooses a; = F,
and that player 3 chooses a3 = S. Then, player 1’s payoff is zero, and this is player 1’s
minimal feasible payoff. Hence, vi® = vf°r = 0.

Next, in the effective independent minimax problem, let «; denote the probability
that player ¢ chooses F. By symmetry, we may assume w.l.o.g. that a; > ay > as.
If ag > %, then player 3 has a payoff of at least % from choosing F. Otherwise, i.e.,
if g < %, then player 1 has a payoff of at least % from choosing S. Conversely, if
] = Qg = ag = %, then all players obtain a payoff of %.

Finally, let pa,a,q, denote the probability of (ay, as, as) € A under some o € A(A).

For player 1, the maximum deviation payoff obtainable under a equals

¢, (o) = max{4prrr, prss} + max{4psrr, pPsss}-

Analogous expressions obtain for players 2 and 3 by permuting indices, so that

cor
wy

= mingea(a) max{®;(a), Po(ar), P3(ar)}. Note that the objective function of the
minimization problem is convex. Given symmetry, we may therefore restrict attention

to distributions « satisfying prss = psrs = pssr and prrs = prsy = psrr. Hence, it
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suffices to minimize ®;(a) subject to nonnegativity constraints and

PFFF 1 3Prss + 3psrF + psss = 1.

It is clearly optimal to set ppss = 4prrr and psss = 4pspr. The problem now reads

min 4pprrF + 4psFF -
PFFF PSFF
s.t. 13ppFF +7PsFF=1

4

13 and psss = 0, so that the

This yields pppr = 1—13 and pspr = 0. Hence, ppss =

symmetric distribution stated in Example 2 is indeed optimal. Moreover, w$** = %.

A.6 Proof of Theorem 2

We will make use of the following auxiliary result.

Lemma A.1. Given a € A(A), let oy € A(A;) denote the marginal of o on A;.
Then, the mapping

a—E,, max Eo|ui(al, a_;) |a;]

7

is continuous on A(A).

Proof. Given the probability distribution o« € A(A), let o;(a;) and a(a;, a_;), respec-
tively, denote the marginal probability of the action a; € A; and the probability of

the action profile (a;,a_;) € A. Then,

Eq, {max Eo|ui(al, a_;) |ai}]
a;GAi

= Z a;(a;) - max Mui(a,‘ a—;)

aleA;
a;€A; g ¢
s.t. a;(a;)>0

- Z meaj{ Z a(a“a—i)ui(a;aa—i)a (AQ)

a’, ;
a;€A; ¢ a_;EA_;

a_;EA_;

because «;(a;) = 0 implies a(a;,a_;) =0 for all a_; € A_;. Since the maxima on the

RHS of equation (A.2) are continuous as functions of «, this proves the lemma. [
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To prove the non-bracketed part of the theorem, we assume w.l.o.g. that u; = w; for all
players j ~ i. Let (i, 8,0) be an MSPE. By Theorem 1, we may assume that (i, 3, 0)
is canonical. Then, in stage t = 0, message profiles are drawn from A according to
the probability distribution u® = u(-| @) € A(A). By player i’s optimality condition
at her information set (&, a;) corresponding to the recommended action a; € A; at

stage t = 0, player i’s expected continuation payoff satisfies

Ui(o|2,a;) > (1—19) max E,ou;(a;, a_;) | a;] + 6L,
a;e i

where L; denotes the infimum of player ¢’s expected payoffs across all MSPE. Since
an MSPE exists by Lemma 1, L; is finite. Further, from stationarity of the game, the
continuation at any stage t induces an MSPE in the subgame, so that any continuation
payoff is at least L;. Let u? € A(A;) denote the marginal distribution of u° on A;.
Taking expectations over a; according to uY shows that i’s expected payoff resulting

from (u, B, o) satisfies

Ui(o) > (1 = 6)E,o |maxE,o [u;(aj, a;) | &]| + 0L;.

Hi larea,
Consider now a sequence { (", 87, 0%)}22, of MSPE with player ¢’s equilibrium payoff
converging to L;. Without loss of generality, we replace {(u”, 87,0")}52, by a subse-
quence such that the corresponding sequence of y*° = p”(-| @) € A(A) converges as
well. Then, we may replace (u, 5,0) by (1", 5”,0") in the above derivation. Taking

the limit ¥ — oo and subsequently rearranging yields, in view of Lemma A.1,

Li > K, [max E,o [ui(a], a_;)] di]] .

(Z;GAZ'
For any j € N such that j ~ i, the above inequality holds for the same limit distri-

bution ;1 when i is replaced by j. Hence,

Li=L;>E,p
! = Hj a;-EAj

max E,o [u;(a), a_;)| dj]] :
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It follows that

Liz max By | max B [ui(d], a-y) | a]
s.t. j~i
Recalling that u° € A(A) is just a correlated action profile shows that indeed L; >
w§®, proving the non-bracketed claim. The bracketed claim is due to Wen (1994,

7 Y

Thm. 1). This completes the proof. [l

A.7 Proof of Theorem 3

The bracketed claim is Wen (1994, Thm. 2). Next, we prove the non-bracketed claim.
We assume w.l.o.g. that w°* = 0 for all € N. We make use of the following auxiliary
result.

Lemma A.2 (Abreu et al., 1994). Let v = (vq,...,v,) € V such that v; > 0 for all

i € N. Then, there exist payoff profiles v,..., v € V that satisfy:

(i) v/ >0 for alli,j € N;

(ii) v; > v}, for alli € N;
(iii) vi < v!, for alli,j € N such that i o j.

Proof. (Sketch) Select one representative from each equivalence class of players and
apply the construction in Abreu et al. (1994, p. 942) to the feasible set for the reduced
player set to obtain payoff vectors with the required strict inequalities. Subsequently;,
assign each player i the respective vectors of her equivalence class. For details, see

Wen (1994, p. 952). O

We now prove the theorem. Take a payoff profile v = (vq,...,v,) € V, such that
v; > 0 for all i € N. By feasibility, there is some distribution o € A(A) such that

ui(a) = Eyfui(a)] = v; for all i € N. Let ot € A(A) be an effective correlated
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minimax distribution against (the equivalence class of) player i, i.e., a solution to the
minimization problem that defines w$°*. Finally, for each i € N, let o', € A(A) be a
correlated action profile that implements v?, as identified in Lemma A.2. W.lo.g., if
i ~ j, we take o’ = o and v’ = v/, hence also o, = o, so that punishment paths
depend only on the deviator’s equivalence class. For a given discount factor 6 € (0,1)
and positive integer 7', we will now characterize a canonical MSPE. By Lemma 1(iii),
it suffices to specify the components of the MSPE for regular histories h. At any
regular history, recommendations made by the device are necessarily regular and,

hence, the obedience of players at former stages is common knowledge among the

players and the device.

Phase A. 1If in every prior stage either all players have been obedient or at least

two players have been disobedient, then u(h) = a.

Phase B. If, in some prior stage precisely one player has been disobedient, player
¢ has been the last such deviator, and this happened at most T" stages before, then
pu(h) = a.

Phase C. 1f, in any prior stage, precisely one player has been disobedient, player
¢ has been the last such deviator, and this happened more than T stages ago, then
pu(h) = a,.

It is now standard to show (e.g., Wen, 1994, pp. 952-953) that there exists an integer
T > 0 and some ¢ € (0,1) such that, for any § € (4, 1), no player i € N has an
incentive to deviate in phase A, and no player 7 € N, whether equivalent to the last
deviator 7 or not, has an incentive to deviate in phases B or C. Therefore, the profile

above can be completed to an MSPE with expected payoff profile v. 0
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A.8 Proof of Lemma 3

We only prove that w§™ = 1. Let Paasa; € [0, 1] denote the probability that the

triple (a1, as,a3) € A is chosen. We seek to minimize

max{prrr, Prss } + max{psrr, Psss |,
P (o) = max { max{prrr, psrs} + max{prsr,psss},
max{prrr, Pssr } + Max{prrs, Psss }

subject to the probability simplex constraints. We note that ®(-) is convex and
symmetric with respect to both arbitrary permutations of the set of players and a
simultaneous swap of F and S in all three action spaces. Hence, we may restrict

attention to solutions satisfying prrpr = psss and

PFFS = PFSF = PSFF — PFSS = PSFS = PSSF-

But then, ®(a) = 2 max{prrr, prss }, which indeed has }l as its minimum. O

A.9 Proof of Theorem 4

The bracketed claim is due to Friedman (1971). We prove the non-bracketed claim.
Fix v = (v1,...,v,) € V with v; > w;(a*) for all i € N. Choose o € A(A) such that

E,[u] = v. For any canonical history hf = (a°,a°...;a"" 1 a'™1), let

*

a, ifa” =a" forall 7 <t,
p 1) = {a , otherwise.
As has been explained in Section 2, it suffices to check that being obedient is sequen-
tially rational at any regular information set (h%,af). If h* documents a deviation,
then u(-|h') = o and this remains true in future stages. Hence, a one-shot de-
viation affects only the current payoff. Since a* is a correlated equilibrium, and
wi(a; | h') > 0 (from regularity), being obedient is sequentially rational in this case.
If h' documents no deviation, then pu(-|h') = a. As a deviation changes the regime

and E,«[u;(a)] < E,lu;(a)], being obedient is sequentially rational for player ¢ also in

this case, if § is sufficiently close to one. This proves the claim. O
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