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1 Preliminaries

1.1 Introduction

Folk theorems shed light on the role of social norms in long-term relationships and

the game-theoretic mechanisms that render such norms sustainable. In their seminal

work, Fudenberg and Maskin (1986) not only delineated conditions under which the

perfect folk theorem applies to infinitely repeated games with perfect monitoring,

but also pointed out inherent limitations of those conditions. Specifically, they noted

that sanctions against an individual player may be hard to implement if the set

of feasible and strictly individually rational payoff profiles is not full-dimensional.

Indeed, as they showed with an example, the conclusion of the folk theorem can fail

in that case. Subsequent work by Abreu et al. (1994) further clarified the role of

the dimensionality assumption for the scope of the perfect folk theorem, highlighting

that effective sanctions presuppose that players’ payoff functions satisfy the NEU

condition, i.e., no two players possess equivalent utility functions. Building on this

observation, Wen (1994) introduced the notion of an effective minimax value. This

led to a comprehensive version of the folk theorem that applies to all finite stage

games, i.e., even if they do not satisfy NEU.

While these contributions focus on enforcement of cooperation through unsuper-

vised equilibrium play, a complementary line of research examines how the intro-

duction of informational coordination can facilitate the implementation of socially

desirable outcomes. Thus, there has been growing interest in understanding the impli-

cations of assuming that a central entity provides players with additional information

or recommendations for actions. By a mediator, we mean an autonomous device that

communicates confidential messages to the players at each stage, just before decisions

are made (Aumann, 1974, 1987; Forges, 1986; Myerson, 1986). It has been known for
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some time that mediation may have an impact on the set of implementable payoffs in

dynamic games. Specifically, coordination between agents who enforce punishments

may strictly lower the utility level to which an opponent can be held (Hart, 1979). In

the theory of infinitely repeated games, this corresponds to an expansion of the set of

penalty payoffs, down to the correlated minimax value. Along these lines, the Nash

folk theorem (where sequential rationality is not imposed at information sets off the

equilibrium path) extends to settings with mediated play in an essentially straightfor-

ward way (Sorin, 1992, p. 86; Renault and Tomala, 2011). However, to our knowledge,

no corresponding extension of the perfect folk theorem has been established. Indeed,

as pointed out by Sugaya and Wolitzky (2021), combining mediation and sequen-

tial rationality in dynamic games can lead to unexpected pitfalls. For instance, the

revelation principle no longer holds in general for the sequential equilibrium concept.

The present paper takes this observation as motivation to revisit the idea of me-

diation in a framework that remains as close as possible to the standard model of

Fudenberg and Maskin (1986). Our main innovation is the assumption that all pri-

vate messages and internal records are ex-post observable, i.e., publicly revealed at

the end of each stage. Moreover, we assume that the mediator is perfectly informed

about all prior actions and messages, i.e., no input is required. The resulting solution

concept, mediated subgame perfect equilibrium (MSPE), requires Bayes consistency of

beliefs and sequential rationality at all information sets. This approach turns out to

be very well-behaved. In particular, the revelation principle applies. Moreover, there

is an easily computable effective correlated minimax value that allows characterizing

the set of payoffs implementable as an MSPE for sufficiently patient players, in per-

fect analogy to Abreu et al. (1994) and Wen (1994). We show that mediation can

strictly expand the set of implementable payoffs not only in games with more than

two players but also in games with impatient players. We further obtain a straight-
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forward extension of Friedman’s (1971) theorem allowing for correlated equilibria as

threat points.

While our key hypothesis, the ex-post observability of messages, departs from the

main thrust of the literature on communication in dynamic games, it has two notable

benefits. First, assuming that mediation is transparent allows us to largely rely on

subgame perfect equilibrium (Selten, 1965) for intuition and to keep explicit modeling

of beliefs (Kreps and Wilson, 1982) at a minimum. Indeed, all private information

in our setup is temporary and related to the mediator’s messages that are disclosed

at the end of each stage. Second, our assumption that the autonomous device must

be “publicly auditable” also has practical appeal: for instance, this principle is com-

monly required in public administration, law enforcement, procurement, and other

hierarchical settings, where it has the potential to improve accountability, reduce

corruption, and foster trust.1 Ex-post observability may, however, also result from

inadvertent or opportunistic leaks of confidential information, which have become

harder to prevent in the digital era.2

1.2 Preview of results

The main results of this paper fall into four groups. First, we derive a revelation prin-

ciple (Theorem 1) for our solution concept. The principle says that, without loss of

generality, messages sent by the mediator convey recommendations for each player to

choose a specific pure action, while players are obedient in the sense that they follow

those recommendations (except after recommendations that are sent with zero prob-

ability given the history). Forges (1986) observed that the classic revelation principle

extends with little change to multi-stage games for the Nash equilibrium concept.

1However, we do not examine incentives for the device to keep its promise.
2For an analysis of mechanism design with information leakage, see Häfner et al. (2025).
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Indeed, a player who is directly informed about the action she is supposed to choose

at any on-path information set is merely deprived of knowledge that is irrelevant for

her decision. That very same intuition, formalized by Sugaya and Wolitzky (2021), is

the basis of our proof as well. However, the extension requires two novel arguments.

First and foremost, because the canonical device in our setup may be in an informa-

tional state that is more limited than that of the original device (because it cannot

keep internal records), the device computes conditional probabilities to recover the

correct probability distribution for randomized recommendations.3 Second, to deal

with subgames that are reached by any (counterfactual) malfunction of the canonical

device, we “reset” the stage counter after such events. Along these lines, we expand

the scope of the revelation principle to reflect sequential rationality in a large class of

repeated games with ex-post transparent mediation.

Next, to prepare the derivation of necessary and sufficient conditions for imple-

mentability of a payoff profile, we introduce the notion of an effective correlated

minimax value wcor
i (for player i). To define the concept, one starts from a correlated

action profile α in the stage game and determines the highest payoff that player i

could possibly realize in the stage game if either player i herself or some other player

j ̸= i with equivalent utility has the discretion to deviate from the recommended

action.4 Then, minimizing over all α yields wcor
i . This concept relates to existing

concepts in a natural way. In games that satisfy NEU, wcor
i coincides with player i’s

effective independent minimax value (Wen, 1994).5 In games with just two players,

3In Forges (1988, p. 197), the canonical mediator remains connected to the non-canonical device
and, as we explain in Section 6, the same assumption is made in the Forges (1986, Prop. 1). Similarly,
in Sugaya and Wolitzky (2021), the mediator can send confidential messages to its future selves.
Sticking with our transparency assumption, however, we will prohibit such possibilities.

4Two players i and j have equivalent utilities if player j’s payoff function is a positive affine
transformation of player i’s payoff function (Abreu et al., 1994).

5Allowing for games that violate NEU allows us to keep a comprehensive perspective. Moreover,
such games arise naturally when dealing with cartels, criminal organizations, oligarchic elites, and
terrorist organizations, for instance.
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wcor
i coincides with player i’s correlated minimax value. A major plus compared to

the independent minimax value and the effective independent minimax value is the

fact that wcor
i can be conveniently determined by solving a simple linear program.

We go on to derive necessary and sufficient conditions for the implementability

of a payoff profile as an MSPE. We show that a necessary condition for the imple-

mentability of a payoff profile as an MSPE is that each player obtains at least her

effective correlated minimax value (Theorem 2). Notably, the proof of this result

crucially exploits the revelation principle. As for sufficient conditions, we establish a

general perfect folk theorem with ex-post observable mediation (Theorem 3), where

the individual rationality condition again takes the form that the expected payoff for

each player strictly exceeds her effective correlated minimax value. From this general

result, we obtain corollaries for games that satisfy NEU and for two-player games.

These corollaries are natural analogues of results in Abreu et al. (1994) and Fuden-

berg and Maskin (1986, Thms. 1 & 2). The proofs of our sufficient conditions follow

established lines, with one exception. Specifically, given mediation, the reference to

“ultimately dispensable” assumptions, such as the observability of mixed actions, is

not needed. Given that the fully rigorous treatment of such issues is quite demand-

ing (Sorin, 1986; Fudenberg and Maskin, 1991) and dispensing with observability of

mixed strategies in games that violate NEU is a delicate issue (Fudenberg et al.,

2007, Sec. 4.2 and Fn. 10), the ability to avoid these complications is, in our view, an

additional advantage of our approach.

Finally, we offer a discussion, covering various examples and extensions. We show

that an example due to Fudenberg and Maskin (1986, Ex. 3) is robust with respect to

the introduction of mediation and, hence, to the availability of a public randomiza-

tion device. We develop an analogue of Friedman’s (1971) folk theorem allowing for

correlated threats. We show that, for a fixed discount factor, the MSPE can be more

6



permissive than the subgame perfect equilibrium with public randomization even in

the two-player case. We review an example due to Forges et al. (1986), relating to

the case of weakly individually rational payoff profiles, and note that its implications

also matter in our setup. And we present an example that sheds light on the role of

internal messages in the canonical autonomous device constructed by Forges (1986).

1.3 Related literature

Following the Nash reversion result by Friedman (1971), seminal work on infinitely

repeated games and the folk theorem includes Aumann and Shapley (1976) and Ru-

binstein (1979). The present paper contributes to the “discounted payoffs approach”

that has been reviewed above.6

The idea of mediation in game theory has its origins in the study of correlated

equilibrium (Aumann, 1974, 1987) and communication equilibria in one-shot games

(Myerson, 1982). These fundamental concepts have been extended to extensive-form

games by Forges (1986) and Myerson (1986).7 None of those concepts, however,

assumes ex-post observable messages. The closest in spirit to the present paper is

Prokopovych and Smith (2004), who defined the concept of subgame perfect corre-

lated equilibrium. Like the present analysis, players are assumed to condition their

choices on the history of action profiles and their current private recommendation. In

contrast to our assumptions, however, the mediator and players in their model cannot

condition on messages exchanged in prior periods.8 Starting with Lehrer (1991) and

6Gossner and Tomala (2020) surveyed the literature. See also Sorin (1992), Mailath and Samuel-
son (2006), and Mertens et al. (2015).

7These and other extensions of correlated equilibrium to dynamic games have been surveyed by
von Stengel and Forges (2008, Sec. 2.4). See also Forges (2020) and Forges and Ray (2024). Solan
and Vieille (2002) studied mediation in stochastic games.

8Interestingly, in their conclusion, Prokopovych and Smith (2004) mention the possibility of
adding confidential messages to the history, yet only as a means to implement public randomiza-
tion effects into their model, and without further elaborating on the implications of making that
assumption.
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Matsushima (1991), the role of communication has been studied predominantly in

repeated games with private monitoring (Ben-Porath and Kahneman, 1996; Compte,

1998; Kandori and Matsushima, 1998).9 Sugaya and Wolitzky (2017, 2018) stressed

the role of mediation under perfect monitoring for the determination of the equilib-

rium set under imperfect private monitoring. In Sugaya and Wolitzky (2017), the

mediator can maintain an undisclosed state across periods and coordinate play via

private recommendations without making the punishment phase common knowledge

among the players.10

The revelation principle for Nash equilibrium in multi-stage games appeared first

in Forges (1986). By comparison, Myerson (1986) assumed sequential rationality

relative to conditional probability systems. Townsend (1988) derived a revelation

principle in a two-stage insurance market. His model is one of pure adverse selection

with ex-post unobservable messages. The mechanism sends internal messages to it-

self, and the second-stage report in the canonical device concerns signals obtained in

both stages (i.e., there is the possibility to “confess”). His solution concept reflects

optimizing behavior in both stages conditioned on beliefs, with posteriors determined

by Bayes’ rule whenever possible. A failure of the revelation principle for trembling-

hand perfect equilibrium was noted by Dhillon and Mertens (1996). Prokopovych

and Smith (2004) obtained a revelation principle for subgame perfect correlated equi-

librium. However, owing to their simpler informational setup, in which messages

exchanged in prior periods are erased from the history, their proof is more straight-

9See also Obara (2009), Cherry and Smith (2010), and Awaya and Krishna (2016).
10The literature is divided regarding the plausibility of mediated play. Lehrer (1992, p. 175)

lauded correlated equilibrium as a solution concept “more attractive than Nash equilibrium.” In
line with this positive assessment, the role of third parties, such as trade associations or specialized
consultants, for collusion in oligopolistic markets and bid rigging in auctions has been acknowledged
by a number of contributions (Aoyagi, 2005; Rahman, 2014; Ortner et al., 2024). On the other hand,
Sugaya and Wolitzky (2017, p. 692) decided to “not take a position on the realism of allowing a
mediator.”
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forward than ours. The most comprehensive analysis of the revelation principle in

multi-stage games, allowing for both adverse selection and moral hazard, is Sugaya

and Wolitzky (2021). They showed that the communication revelation principle may

fail for sequential equilibrium, whereas it holds for conditional probability perfect

Bayesian equilibrium. In their setting, however, the mediator can send confidential

internal messages to its future self.11 Makris and Renou (2023) generalized the con-

cept of correlated Bayesian equilibrium (Bergemann and Morris, 2016) to multi-stage

games.

The full-dimensionality condition introduced by Fudenberg and Maskin (1986,

Ex. 3) is not only relevant in the class of games considered in the present paper, but

also in finitely repeated games (Benoit and Krishna, 1985), OLG models (Kandori,

1992; Smith, 1995), and infinitely repeated games with random matching (Deb et al.,

2020). The NEU condition is strictly less stringent (Abreu et al., 1994). Sekiguchi

(2022) pointed out that the conclusion of the perfect folk theorem can be obtained in

games in which all players have equivalent utilities when monitoring is both endoge-

nous and unobservable.

The correlated minimax value appeared in Renault and Tomala (1998, 2011),

Tomala (1999, 2009, 2013), Gossner and Hörner (2010), Laclau (2014), and Bavly

and Peretz (2019). It is well-known that communication allows players to depress a

deviator’s payoff below the minimax value (Gossner and Tomala, 2007). Renault and

Tomala (2011, Ex. 2.7 & Thm. 3.1) illustrated the fact that the correlated minimax

value may be strictly lower than the independent minimax value and derived a Nash

folk theorem allowing for correlation. With heterogeneous discounting, the effective

minimax value is not a lower bound for subgame perfect payoffs (Chen, 2008).

11Interestingly, our informational setup can be replicated in Sugaya and Wolitzky (2021). For this,
the mediator would send carbon copies of all private messages to its future self in the next stage,
who would then disclose those messages to all players. Cf. Section 7.
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Relative to this literature, the novelty of the MSPE concept is the combination of

private messaging, sequential rationality, and ex-post transparency.

1.4 Overview

The remainder of this paper is structured as follows. Section 2 introduces infinitely

repeated games with mediation. The revelation principle is established in Section 3.

Section 4 introduces the effective correlated minimax value, while Section 5 derives

necessary and sufficient conditions for MSPE implementability. An example-based

discussion can be found in Section 6. Section 7 concludes. Technical proofs are

relegated to an Appendix.

2 Infinitely repeated games with mediation

This section prepares the main analysis. We first introduce our equilibrium concept

(Section 2.1) and then derive its basic properties (Section 2.2).

2.1 Mediated subgame perfect equilibrium (MSPE)

For a finite set of players N = {1, 2, . . . , n}, let G = {Ai, ui}i∈N be the stage game,

where for each player i ∈ N , Ai is the finite set of i’s actions, and ui : A ≡×i∈N Ai →

R is i’s payoff function. Let Mi be a finite set of messages for player i. At any stage

t ∈ {0, 1, 2, . . .}, each player i receives a messagemt
i ∈ Mi and subsequently chooses an

action ati ∈ Ai. A history of length t is a finite sequence ht = (m0, a0; . . . ;mt−1, at−1),

where, for any τ ∈ {0, . . . , t − 1}, mτ ∈ M ≡×i∈N Mi is a profile of messages, and

aτ ∈ A is a profile of actions. The set of histories of length t will be denoted by H t,

where h0 = ∅ is the empty history. Let H =
⋃∞

t=0H
t be the set of histories of any

length, with typical element h. A device is a mapping µ : H → ∆(M),12 and we

12For any finite set X, we denote by ∆(X) the set of probability distributions on X.
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denote by µ(· |h) and µi(· |h) =
∑

m−i∈M−i
µ(·,m−i |h), respectively, the probability

distributions over m and mi at history h.13 Any pair (h,mi) with a history h ∈ H

and a message mi ∈ Mi will be called an information set for player i. Let Ii denote

the set of player i’s information sets.

Mediator draws:

mt ∼ µ(· |ht)

privately sends mt
i

Players act:

choose ati
given (ht,mt

i)

Record updates:

(mt, at) be-
comes public

ht+1 = (ht;mt, at)

Figure 1: Within-stage timing.

The timing within each stage is illustrated in Figure 1. At the beginning of stage

t, the device draws a message profile mt according to µ(· |ht) and privately sends mt
i

to each player i. Players then choose actions ati simultaneously and independently.

Finally, (mt, at) is made public and is appended to the history to form ht+1.

For clarity, we repeat our main assumption:

Assumption 1. At each stage t ∈ {0, 1, . . .},

(i) the device cannot condition its recommendation profile on any information other

than the public record ht, and

(ii) each player i’s information consists of ht and the private message mt
i.

Thus, the device cannot send confidential messages to its future selves (or, in any

case, cannot make use of them), and any private message communicated at some

stage is made public at the end of that stage.

A behavior strategy for player i is a mapping σi : Ii → ∆(Ai), with σi(· |h,mi)

denoting the distribution over player i’s action ai ∈ Ai at (h,mi) ∈ Ii. Let Σi be

13As usual, the index −i refers to the elements with index j ̸= i. Thus, M−i =×j ̸=i
Mj ,

m−i = (mj)j ̸=i, etc.
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the set of player i’s behavior strategies, and let Σ =×i∈N Σi. Given a device µ and

a profile of behavior strategies σ = (σ1, . . . , σn) ∈ Σ, the outcome is the induced

probability distribution over infinite paths {at}∞t=0. Let δ ∈ (0, 1) denote the discount

factor. Then, after normalization, player i’s expected payoff is defined as

Ui(σ) = E

[
(1− δ)

∞∑
t=0

δtui(a
t)

]
, (1)

where we suppress the dependence on µ for convenience.

Let (ht,mt
i) ∈ Ii be an information set for some player i ∈ N . We denote by

βi(· |ht,mt
i) ∈ ∆(M−i) player i’s belief over other players’ messages m−i at (h

t,mt
i).

A system of beliefs β specifies a mapping βi : Ii → ∆(M−i) for each i ∈ N . We note

that player i’s belief βi(· |ht,mt
i), the profile of behavior strategies σ, and the device µ

jointly induce a probability distribution over infinite continuation paths {at+τ}∞τ=0.
14

Player i’s continuation payoff at (ht,mt
i) is then defined as

Ui(σ |ht,mt
i) = E

[
(1− δ)

∞∑
τ=0

δτui(a
t+τ )

]
, (2)

where we again suppress the dependence on µ and βi.

Definition 1. A mediated subgame perfect equilibrium (MSPE) is a triple (µ, β, σ)

such that the following two conditions hold:

(i) (Bayes consistency) Players’ beliefs are derived from µ via Bayes’ rule whenever

possible, i.e.,

βi(m−i |h,mi) =
µ(mi,m−i |h)
µi(mi |h)

for any player i ∈ N , any information set (h,mi) ∈ Ii such that µi(mi |h) > 0,

and any profile of messages m−i ∈ M−i.

14For details, see Appendix A.1.
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(ii) (Sequential Rationality) Given the device µ and a system of beliefs β, players’

choices satisfy

Ui(σ |h,mi) ≥ Ui(σ
′
i, σ−i |h,mi),

for any player i ∈ N , any information set (h,mi) ∈ Ii, and any deviation

σ′
i ∈ Σi.

We emphasize that the set of messages Mi for each player i is part of the description

of the MSPE rather than being exogenously given.

We will say that a message mi (a message profile m) at history h ∈ H is regular if

µi(mi |h) > 0 (if µ(m |h) > 0).15 Similarly, a history ht ∈ H t is regular if µ(mτ |hτ ) >

0 for all τ ∈ {0, . . . , t− 1}. Finally, we call an information set (h,mi) ∈ Ii regular if

both h and mi are regular.

Keeping the device µ fixed, MSPE is outcome-equivalent to sequential equilibrium

(SE). To see this, recall our assumption that the device is not a player but merely

executes moves of Nature. Therefore, SE requires Bayes consistency only at regular

information sets. However, the actions taken at irregular information sets do not

matter for sequential rationality at regular information sets, nor for the outcome of

the game. Hence, for a fixed device, the respective sets of outcomes and payoffs

coincide between SE and MSPE.

The following example illustrates Definition 1.

Example 1. Consider the game G1 shown in Figure 2. Player 1 chooses rows, player

2 chooses columns, and player 3 chooses matrices. As long as player 1 is obedient,

µ(· |h) gives equal weight to (T,R,B1) and (B,L,B1), leading to the payoff profile

(1, 1, 1). If player 1 deviates, µ(· |h) gives equal weight to (T,L,B1) and (T,R,B2),

15Intuitively, an irregular message mi corresponds to a malfunction of the device that is imme-
diately detectable for player i. In contrast, irregular message profiles need not be immediately
detectable for all players, but will be publicly evident at the beginning of the next stage.
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leading to the Pareto-inferior payoff profile (0, 0, 1
2
). For δ ≥ 4

5
, this describes an

MSPE.16

B1

L R

T 2, 0, 1 4, 0, 0

B −2, 2, 2 4, 0, 0

B2

L R

T 4, 0, 0 −2, 0, 0

B 4, 0, 0 2, 0, 0

Figure 2: The game G1.

The example shows that an MSPE can be more permissive than subgame perfect

equilibrium (SPE). Indeed, since player 1’s independent minimax value is 2, the Pareto

optimal payoff profile (1, 1, 1) cannot be enforced by an SPE. A public randomization

device does not help because bounding player 1’s payoff to 1 requires that players 2

and 3 receive private messages. One can also check that (1, 1, 1) is not a correlated

equilibrium payoff of the one-shot game.

2.2 Basic properties of MSPE

Recall that, by definition, a public correlation device makes an independent draw from

the unit interval at the start of each stage t ∈ {0, 1, . . .} (Hart, 1979). The following

lemma collects basic properties of our equilibrium concept.

Lemma 1. The MSPE solution concept has the following properties:

(i) The one-shot deviation principle applies.

(ii) Any payoff vector implementable by an SPE with public randomization for some

δ ∈ (0, 1), even with observable mixed actions, is implementable by some MSPE

for the same discount factor.17

16A perfect folk theorem using correlated equilibrium as a threat point can be found in Section 6.
17As we saw in Example 1, the converse is not true in general.
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(iii) For any (µ, β, σ) satisfying Bayes consistency and sequential rationality at all

regular information sets, there is an outcome-equivalent MSPE (µ̃, β̃, σ̃) using

the same message spaces.

(iv) The unconditional repetition of any correlated equilibrium of the stage game G

is an MSPE for any δ ∈ (0, 1). In particular, an MSPE exists.

Proof. See Appendix A.2.

By part (i), sequential rationality can be checked by considering deviations at in-

dividual information sets only. Part (ii) is immediate for any SPE without public

randomization, by assuming a trivial message structure (i.e., all message spaces are

singletons). The fact that public randomization, at least in terms of payoffs, can

be replicated by an MSPE requires a proof, however. Indeed, while M is finite,

public randomization admits a continuum of signals. For games in strategic form,

this additional flexibility is without consequence for payoffs by an application of

Carathéodory’s Theorem (e.g., Rockafellar, 1970). Indeed, any distribution over pay-

off profiles induced by a continuum signal can be replaced, without affecting the

expectation, by a distribution over finitely many messages. In the Appendix, we of-

fer a refined argument valid for infinitely repeated games. Part (iii) is particularly

useful in applications because it obviates not only the specification of beliefs in the

description of an MSPE, but also the discussion of irregularities. Since any observable

deviation of the device will be public information from the subsequent stage onward,

it suffices to “reset” the stage counter. This, in turn, allows defining a player’s belief

after a zero-probability message arbitrarily and lets her choose a best response in

the stage game to the opponents’ correlated action profile induced by her belief and

the opponents’ behavior strategies. Part (iv) is now immediate. The set of messages

for a player may even be chosen as the support of the corresponding marginal of
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the correlated equilibrium, which directly circumvents the need to define beliefs at

information sets that the mediator invokes with probability zero given the history.

Recalling that the stage game admits a correlated equilibrium (Hart and Schmeidler,

1989), one obtains existence.

3 The revelation principle

In this section, we derive a revelation principle for MSPE. This result will, in particu-

lar, be useful for the derivation of necessary conditions for the folk theorem. However,

given the recent findings by Sugaya and Wolitzky (2021), our version of the revelation

principle might also be of independent interest.

Definition 2. An MSPE (µ, β, σ) is called canonical if

(i) Mi = Ai, for every i ∈ N , and

(ii) for any history h ∈ H and any message mi ∈ Mi such that µi(mi |h) > 0, the

mixed action σi(· |h,mi) ∈ ∆(Ai) gives full weight to ai = mi, for any i ∈ N .

The first condition characterizes the device as direct, while the second condition re-

quires all players to be obedient. It should be noted that Definition 2 does not require

player i’s obedience in response to a message mi that is sent with probability zero

given the history h.18

In a canonical MSPE, any history of length t is of the form

ht = (â0, a0; . . . ; ât−1, at−1),

where âτ ∈ A is the profile of actions recommended to the players, and aτ ∈ A is the

profile of actions actually chosen by the players at stage τ , for any τ ∈ {0, . . . , t −
18This avoids, in particular, players choosing strictly dominated actions after a malfunction of the

device.
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1}. In particular, in line with the principle of transparency underlying the MSPE

concept, any deviation from the recommended action profile is detectable at the end

of the stage, since both the recommendations and the chosen actions become public

information.

Theorem 1 (Revelation Principle). For any MSPE, there exists an outcome-

equivalent MSPE that is canonical.

Proof. See Appendix A.3.

Thus, we may always assume w.l.o.g. that, for all players i ∈ N , the set of messages

Mi corresponds in a one-to-one fashion to the set of actions Ai, and player i’s behavior

strategy σi reflects obedience in the sense explained above.

For mathematical convenience, the proof of Theorem 1 defines the canonical device

directly from the original MSPE. We found it instructive to decompose the construc-

tion conceptually into three steps:

Step 1 First, to move the randomization from the players to the device, the private

message mi for player i is complemented by a recommended action âi ∈ Ai. To

ensure sequential rationality and outcome equivalence, the purified device sends

the message profile (mt, ât) at a given history with the same probability with

which the combination (mt, at), with chosen action profile at = ât, arises at the

corresponding history in the original MSPE.

Step 2 Next, a direct device is constructed that sends only the recommended action âi

to each player i. To preserve the law of future recommendations, this device

sends (in a strict generalization of the MSPE concept) the original message

profile mt to its future selves.19 Obedience in the sense defined above is sequen-

tially rational in this setup because (i) players know less, as in Forges (1986),

19Alternatively, the mediator keeps an “internal record” of the original messages.
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and (ii) obedience remains optimal even if regular and irregular information

sets are merged (because players, looking ahead, assign probability zero to any

malfunction of the device).

Step 3 Finally, the internal messages are dropped. At any regular history, the canon-

ical device, fully informed about the action profiles recommended and chosen

at all prior stages, but ignorant of the internal messages sent by the direct de-

vice, determines the conditional distribution over those messages and uses it to

replicate the randomized recommendation profile of the direct device.

Step 1 is simple but important. Indeed, without prior purification, the player does

not know her own action (Aumann, 1987, p. 11), so that the information structures

compared by the revelation principle, viz. abstract messages vs. actions, would not

be comparable. The probability consideration in this step is a standard element of

the communication revelation principle (Forges, 1986), and it is formalized in Sugaya

and Wolitzky (2021, App. B).

Step 3 is needed in our framework because the MSPE does not allow the mediator

to keep information undisclosed across stages. Sugaya and Wolitzky (2021, Online

Appendix, pp. 81-87) established a communication revelation principle for finitely

repeated multi-stage games with pure moral hazard. Their framework allows for

undisclosed forms of mediation, however. In particular, the mediator’s messages

in later stages can be based on private information from earlier stages that is not

accessible to the players. In our setting, however, the device cannot condition on

private information that it held in earlier stages. As a result, we cannot make direct

use of Sugaya and Wolitzky (2021, Prop. 4) in our proof of Theorem 1.20

20The subtle role of internal records for the revelation principle for extensive-form correlated
equilibrium (Forges, 1986) is illustrated with an example in Section 6.
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4 Minimax values

We first review various minimax concepts that have been proposed in the literature

(Section 4.1), and then introduce our notion of effective correlated minimax value

(Section 4.2).

4.1 Minimax concepts in the literature

Let G = {Ai, ui}i∈N be an arbitrary finite game. Player i’s independent minimax

value is defined as

vindi = min
α−i∈×j ̸=i ∆(Aj)

max
ai∈Ai

Eα−i
[ui(ai, a−i)],

where Eα−i
[·] denotes the expectation over the action profile a−i ∈ A−i with respect

to the profile of mixed actions α−i. Similarly, player i’s correlated minimax value is

defined as

vcori = min
α−i∈∆(×j ̸=i Aj)

max
ai∈Ai

Eα−i
[ui(ai, a−i)].

It is clear from the definitions that vcori ≤ vindi , with equality if n = 2. For n ≥ 3

players, however, the ability to correlate mixed actions may allow the opponents of

player i to hold i’s expected payoff strictly below the independent minimax payoff, so

that vcori < vindi becomes a possibility (Hart, 1979; Renault and Tomala, 1998, 2011).

This possibility is illustrated also in Example 1.

Recall that two players i, j ∈ N have equivalent utilities, formally i ∼ j, if there

exist scalars c, d such that d > 0 and ui(a) = c + duj(a) for all a ∈ A (Abreu et al.,

1994). Further, G satisfies NEU if no pair of distinct players has equivalent utilities.

Following Wen (1994), let player i’s effective independent minimax value be defined

as

wind
i = min

α∈×k∈N ∆(Ak)
max
j∈N

s.t. j∼i

max
a′j∈Aj

Eα−j
[ui(a

′
j, a−j)],
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where α−j ∈×k ̸=j
∆(Ak) is derived from the vector α by eliminating the j-th com-

ponent.

The value wind
i coincides with the independent minimax value vindi if G satisfies

the NEU condition. Indeed, the maximization over the equivalence class of player i

is trivial in this case. If G does not satisfy NEU, however, then there may be some

player j ∼ i that is able to raise her own and therefore i’s utility against the joint

minimax action profile α, so that, in general, only vindi ≤ wind
i can be ascertained.21

In fact, a well-known example by Fudenberg and Maskin (1986, Ex. 3) shows that

this inequality can be strict if NEU does not hold, i.e., players cannot, in general, be

held down to their independent minimax values in such games.22

4.2 Effective correlated minimax value

In analogy to the development above, we now introduce the following variant of the

correlated minimax value. Let player i’s effective correlated minimax value be defined

as

wcor
i = min

α∈∆(A)
max
j∈N

s.t. j∼i

Eαj

[
max
a′j∈Aj

Eα[ui(a
′
j, a−j)

∣∣ aj]] ,

where αj denotes the marginal distribution of α on Aj, and the inner expectation is

conditional on aj, i.e., on the realization of αj.
23 The conditioning on aj in the inner

21For players in an equivalence class, it can be assumed w.l.o.g. that their payoff functions are
identical. In the case n = 2, this has the notable implication that wind

1 = wind
2 = max{vind1 , vind2 }

(Smith, 1995, p. 427). However, no analogous representation is feasible for n ≥ 3, as follows from
Fudenberg and Maskin (1986, Ex. 3).

22Fudenberg and Maskin (1986) concluded from their example that the dimensionality assumption
cannot be dispensed with in their statement of the perfect folk theorem. Strictly speaking, however,
this conclusion would require showing that, even using a public randomization device, no player i
can be held down to vindi . In Section 6, we show that this is indeed the case for their example (but
not in general).

23Here and below, we use the following convention: If the marginal distribution αj assigns prob-
ability zero to some action aj ∈ Aj , then the conditional expectation Eα[ui(a

′
j , a−j)

∣∣ aj ] is replaced
by the unconditional expectation Eα[ui(a

′
j , a−j)]. In fact, any alternative convention delivers the

same value for wcor
i because the outer expectation gives zero weight to such aj . See the proof of

Lemma A.1 in the Appendix.
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expectation should be intuitive because player j observes aj before choosing a′j. At

the same time, the members of player i’s equivalence class cannot coordinate their

responses, so that unilateral deviations are considered.

The following lemma summarizes the discussion above and complements it by

providing additional inequalities related to the effective correlated minimax value.

Lemma 2. Let G = {Ai, ui}i∈N be an arbitrary finite game, and i ∈ N . Then, the

following holds true:

(i) The minimax values introduced above satisfy:

vindi ≤ wind
i

≥ ≥

vcori ≤ wcor
i .

(ii) If G satisfies NEU, then wind
i = vindi and wcor

i = vcori .

(iii) If n = 2, then vcori = vindi and wcor
i = wind

i .

Proof. See Appendix A.4.

In part (i), only two inequalities require a proof. The lower horizontal inequality

says that player i’s correlated minimax value is weakly smaller than her effective

correlated minimax value. The intuition is similar to the independent case. Indeed,

the presence of an additional player with equivalent utility can never make it easier

to minimax a given player i, even if the minimax profile may be correlated. Next,

the right-hand vertical inequality says that player i’s effective independent minimax

value is weakly larger than its correlated counterpart. This observation captures

the intuition that correlated minimax strategies can be more effective in games with
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three or more players, even against an equivalence class of players. Parts (ii) and

(iii) provide conditions under which the various concepts coincide. These conditions

are very useful in applications. In general, however, the effective correlated minimax

value may differ from the other three minimax concepts, as the following example

illustrates.

F

F S

F 4, 4, 4 0, 0, 0

S 0, 0, 0 0, 0, 0

S

F S

F 0, 0, 0 0, 0, 0

S 0, 0, 0 1, 1, 1

Figure 3: The game G2.

Example 2. For the game G2 from Figure 3, we have vind1 = vcor1 = 0 and wind
1 = 4

9
.

However, the effective correlated minimax value is given by wcor
1 = 4

13
, and it can be

implemented using the following distribution of action profiles:24

α(F,F,F) = 1
13
,

α(F,S,S) = α(S,F,S) = α(S,S,F) = 4
13
,

α(a1, a2, a3) = 0, otherwise.

In less straightforward examples, the computation of the effective correlated minimax

is tremendously simplified by the fact that the minimax problem can be rewritten

as a linear program.25 In contrast, this is not in general feasible for the independent

minimax concepts (because individual minimax probabilities are multiplied if n ≥ 3).

24For further details, see Appendix A.5.
25Indeed, let uj(aj) denote player i’s (unconditional) maximal payoff when player j ∼ i is supposed

to play aj but may deviate. Further, let Ui ∈ R denote the maximum to be minimized. Then, as
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5 Necessary and sufficient conditions

This section first derives conditions necessary for a payoff profile to be implementable

as an MSPE (Section 5.1), and then various sufficient conditions (Section 5.2).

5.1 Necessary conditions

Using the concepts introduced above, we can derive the following necessary conditions

for MSPE implementability.

Theorem 2 (Necessary Conditions). If Ui(σ) is player i’s expected payoff under an

MSPE (SPE), then Ui(σ) ≥ wcor
i (Ui(σ) ≥ wind

i ).

Proof. See Appendix A.6.

The bracketed claim, due to Wen (1994), is based on the intuition that player i’s

payoff cannot be depressed strictly below wind
i if either player i herself or some other

player j ̸= i with equivalent utility can avert this outcome. The proof of the non-

bracketed part of Theorem 2 requires an additional step. Specifically, one notes that,

by the revelation principle, the mediator may w.l.o.g. be assumed to send messages

in the form of pure action recommendations. Therefore, the stage payoff of the “most

fortunate deviator” boils down to the effective correlated minimax value.

follows from Eq. (A.2) in the Appendix,

wcor
i = min

α, {uj}j∼i,Ui

Ui

s.t. α ∈ ∆(A)

uj(aj) ≥
∑

a−j∈A−j

α(aj , a−j)ui(a
′
j , a−j) ∀ j ∼ i, ∀aj , a′j ∈ Aj

Ui ≥
∑

aj∈Aj

uj(aj) ∀ j ∼ i.
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5.2 Sufficient conditions

We define, as usual, the set of feasible payoff profiles V as the convex hull of {u(a) ≡

(u1(a), . . . , un(a)) : a ∈ A}. The following result is a comprehensive folk theorem for

the MSPE concept.

Theorem 3. Let v ∈ V be such that vi > wcor
i (vi > wind

i ) for all i ∈ N . Then,

there is some δ ∈ (0, 1) such that for all δ ∈ (δ, 1), there exists an MSPE (SPE with

observability of mixed actions26) in the infinitely repeated game in which player i’s

expected payoff is vi, for all i ∈ N .

Proof. See Appendix A.7.

The proof of Theorem 3 follows the steps of the corresponding result for SPE, which is

stated above in brackets (Wen, 1994, Thm. 2). The obvious change in the statement of

the result is that the effective independent minimax value is replaced by the effective

correlated minimax value.

There is another distinction, however. To derive sufficient conditions for the folk

theorem under perfect monitoring, Wen (1994) imposed simplifying assumptions that

(i) players have access to a public randomization device, and that (ii) mixed actions

are ex-post observable. While a follow-up paper (Wen, 2002) argued that these as-

sumptions are ultimately dispensable for sufficiently patient players, the correspond-

ing proofs are somewhat deep and spread out over multiple papers. Indeed, to replace

public and private randomizations by deterministic sequences of pure actions, three

techniques are employed. First, a time-averaging argument is used to represent arbi-

trary feasible payoff profiles as discounted averages of pure-strategy outcomes (Sorin,

26The MSPE concept does not assume that mixed actions are observable. However, as pointed
out by Fudenberg et al. (2007, Fn. 10), the sufficient conditions in Wen (1994) crucially depend on
that assumption. We therefore make this dependence explicit in the bracketed case.
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1986). Second, cycling over action profiles is used to keep incentives from one-shot de-

viations small (Fudenberg and Maskin, 1991). Third and finally, a form of long-term

accounting is used to make players truly indifferent between pure actions during the

minimax phase (Fudenberg and Maskin, 1986, Sect. 6). While, to our understanding,

all of these arguments are important and reflect considerations that arise similarly in

real-world applications, the bulk of the literature has preferred to make simplifying

assumptions instead. Indeed, as pointed out by Fudenberg et al. (2007, Fn. 10), the

sufficient conditions in Wen (1994) crucially depend on the observability of mixed

actions. Allowing for ex-post transparent mediation circumvents this complication.

In particular, the reference to simplifying assumptions is absent from our proof of the

non-bracketed part of Theorem 3.27

The following version of the folk theorem with mediation is an analogue of Abreu

et al. (1994, Thm. 1).

Corollary 1. Suppose that NEU holds. Then, any v ∈ V such that vi > vcori (vi >

vindi ) for all i ∈ N is an MSPE (SPE) payoff profile in the infinitely repeated game

when players are sufficiently patient.

Proof. According to Lemma 2(ii), NEU implies wcor
i = vcori . The non-bracketed claim

is therefore immediate from Theorem 3. The bracketed claim is Abreu et al. (1994,

Thm. 1).

Finally, we turn to two-player games. Mediation does not essentially affect the set of

SPE payoffs in two-player games in the limit as δ → 1.

Corollary 2. Suppose that n = 2. Then, any v ∈ V such that vi > vindi for i ∈ {1, 2}

is an MSPE (an approximate SPE) payoff profile in the infinitely repeated game when

27Mediation also avoids pitfalls that have been identified in the use of public randomization in
asymmetric settings (Olszewski, 1998) and in limits (Yamamoto, 2010).
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players are sufficiently patient.

Proof. We prove the non-bracketed case first. By Lemma 2(iii), we know that wcor
i =

wind
i , for i ∈ {1, 2}. If G satisfies, in addition, the NEU condition, then wind

i = vindi ,

for i ∈ {1, 2}, by Lemma 2(ii), and the claim is immediate from Theorem 3. If G

violates NEU, then we may assume w.l.o.g. that u1 = u2, so that wind
1 = wind

2 =

max{vind1 , vind2 } (see Fn. 21). Since feasibility implies v1 = v2, the claim holds in this

case as well. In sum, we have established the non-bracketed claim.28 The bracketed

claim is Fudenberg and Maskin (1991, Prop. 2) for n = 2.

6 Discussion

This section collects additional results and clarifications. Section 6.1 revisits the

full-dimensionality counterexample of Fudenberg and Maskin (1986, Ex. 3). Sec-

tion 6.2 develops a folk theorem based on correlated threats. Section 6.3 illustrates

that, for a fixed discount factor, private recommendations can substitute for patience.

Section 6.4 revisits the example of Forges et al. (1986), related to strict individual

rationality. Finally, Section 6.5 comments on the role of internal messages in the

revelation principle for extensive-form correlated equilibrium.

6.1 The example of Fudenberg and Maskin (1986)

Consider the game G3 shown in Figure 4. If two players decide to choose different

pure actions, then the payoff of the third player is held down at zero. Hence, vindi =

vcori = 0, for each player i ∈ N .

Lemma 3. For the game G3, we have wcor
i = 1

4
, for each i ∈ N .

28Alternatively, by Fudenberg and Maskin (1986, Thm. 1), any v ∈ V satisfying the conditions
of the corollary can be implemented as an SPE with public randomization and observable mixed
actions if players are sufficiently patient. Then, the non-bracketed claim follows from Lemma 1(ii).
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Proof. See Appendix A.8.

The fact that wind
i = 1

4
is due to Fudenberg and Maskin (1986, Ex. 3). In view of

Lemma 2, the statement that wcor
i = 1

4
is stronger (but easier to check). It says that,

even with mediation, it is not feasible to lower any player’s payoff to less than 1
4
. This

fact has a corollary, which we state separately for clarity.

F

F S

F 1, 1, 1 0, 0, 0

S 0, 0, 0 0, 0, 0

S

F S

F 0, 0, 0 0, 0, 0

S 0, 0, 0 1, 1, 1

Figure 4: The game G3.

Corollary 3. Fudenberg and Maskin (1986, Ex. 3) is robust with respect to the in-

troduction of a public randomization device.

Proof. By Lemma 1(ii), mediation is more permissive than access to public random-

ization. Therefore, the assertion follows from Lemma 3.

Thus, even if public randomization is allowed, the conclusion of the perfect folk

theorem for games with n ≥ 3 players may become invalid if the set of feasible

payoff profiles is of dimension strictly lower than n. Sufficient conditions have often

been presented under the simplifying assumption that players have access to a public

randomization device. Therefore, Corollary 3 closes a potentially important gap in

the literature.

6.2 Correlated threats

As was seen in Example 1, a simple way to construct an MSPE is by using a correlated

equilibrium as a threat point. Generalizing this idea leads to the following extension
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of Friedman’s (1971) perfect folk theorem.

Theorem 4. Let α∗ ∈ ∆(A) be a correlated equilibrium (Nash equilibrium) in the

stage game G, with payoff profile u(α∗) ∈ Rn. Then, any feasible payoff profile that

strictly dominates u(α∗) in the Pareto sense, results from an MSPE (SPE) for δ

sufficiently close to one.

Proof. See Appendix A.9.

Since the set of correlated equilibria can be strictly larger than the convex hull of the

Nash equilibria, a correlated threat can be more effective than a Nash threat even in

a two-player game. This fact is illustrated by our next example.

L C R

T 1, 1 1, 0 −3,−2

M 0,−3 −1,−1 2, 0

B 2,−1 0,−2 0, 0

Figure 5: The game G4.

Example 3. Consider the game G4 in Figure 5. Suppose that, on the equilibrium

path, the mediator recommends (T,L) at every stage, yielding the payoff profile

v = (1, 1). After any deviation by any player, the mediator switches permanently to

the correlated equilibrium α∗ ∈ ∆(A) defined by

α∗(T,C) = 1
3
, α∗(M,C) = 1

3
, α∗(M,R) = 1

3
.

The correlated equilibrium implements the payoff profile (2
3
,−1

3
). Hence, we have an

MSPE for all δ ≥ 3
4
.
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Notably, v = (1, 1) cannot be enforced by a Nash threat. Indeed, the stage game has

the unique Nash equilibrium (M,R), with payoff profile (2, 0).29

6.3 The role of the discount factor

For n = 2 players, our necessary and sufficient conditions imply that the respective

limiting sets, as δ → 1, of strictly individually rational payoffs implementable by an

MSPE or SPE coincide. For a fixed discount factor, however, private messages can

matter, as our next example shows.

R P S

R 0, 0 0, 2 2, 0

P 2, 0 0, 0 0, 2

S 0, 2 2, 0 0, 0

Figure 6: The game G5.

Example 4. Consider the game G5 in Figure 6. Let α∗ denote the correlated equi-

librium in which each non-tied outcome receives weight 1
6
. Then, the unconditional

repetition of α∗ is an MSPE for any δ ∈ (0, 1), implementing the payoff profile (1, 1).

However, if δ is too small, then (1, 1) is not implementable as an SPE.30

In the example, the MSPE outcome cannot be replicated using an SPE with public

randomization. The reason is that, without private messages, at least one player can

perfectly predict the other player’s action, which makes it hard to deter a deviation

driven by short-term considerations.

29Since G4 is a two-player game and v = (1, 1) is strictly individually rational, v can be imple-
mented by some SPE. Without observable mixed actions, however, such an SPE may be complicated.

30Indeed, achieving a total payoff of 2 makes it imperative to avoid any ties. Therefore, at any
history on the equilibrium path, at least one player chooses a pure action. But then one of the
players has a one-shot deviation gain of at least 2

3 . For δ < 1
4 , that deviation cannot be deterred in

any SPE.
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6.4 Weak vs. strict individual rationality

This section revisits an example that has been used to explain why sufficient condi-

tions for folk theorems commonly require strict individual rationality for all players.

Example 5. Consider the game G6 shown in Figure 7. The payoff profile v = (1, 0, 0) is

feasible by alternating between (F,F,F) and (S,S,S). Moreover, vind1 = vind2 = vind3 =

0. However, v is not implementable as an SPE (even with public randomization).31

F

F S

F 1, 1,−1 0, 0, 0

S 0, 0, 0 0, 0, 0

S

F S

F 0, 0, 0 0, 0, 0

S 0, 0, 0 1,−1, 1

Figure 7: The game G6.

Turning to the possibility of mediation, the very same arguments show that vcori = 0

for i ∈ {1, 2, 3} and that (1, 0, 0) cannot be implemented as an MSPE either. The

consideration of effective minimax values is unnecessary as a consequence of Lemma

2(ii) because G6 satisfies NEU. Thus, mediation does not obviate the need for the

strictness assumption.

6.5 On the revelation principle for extensive-form correlated
equilibrium

A novel element of our proof of the revelation principle is the idea that the canonical

mediator speculates in a Bayesian fashion about the messages that the original device

has sent in prior stages. To clarify our contribution, this section elaborates on the

revelation principle for extensive-form correlated equilibrium. In Forges (1986), the

31Indeed, if a1 = a3 = F (a1 = a2 = S) is anticipated with positive probability at some stage,
then player 2 (player 3) could realize a strictly positive payoff by choosing a2 = F (a3 = S) in the
first such stage, and choosing her weakly dominant action in all subsequent stages.
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use of a canonical device can be assumed w.l.o.g. because players interacting with

it receive less information, and therefore have fewer ways to deviate. The original

proof does not explicitly discuss the point, however, that also the device receives

less information if replaced by its canonical version. In the example below, the non-

canonical device proposes one of two mixed Nash equilibria in the first stage. Since

the two equilibria have identical support, the information regarding the equilibrium

recommendation is partly lost when the players receive direct messages containing

only information about their pure choices. A canonical device without an internal

record might then lack sufficiently precise information to make recommendations in

the same way as in the non-canonical setup. The example captures the intuitive idea

that multiple selves of the device are “connected.” The example thereby illustrates

the fact that the mediator’s ability to communicate with itself (Sugaya and Wolitzky,

2021) is, a priori, stronger than the assumption that future selves merely have access

to messages sent in prior periods (Forges, 1986).

Example 6. There are n = 3 players and two stages t = 1, 2. Players 1 and 2 make

their choices at stage t = 1, while player 3 makes her choice at stage t = 2. There are

no moves of Nature. Neither player 3 nor the device can observe the choices made

at stage t = 1 by players 1 and 2. Payoffs in the resulting two-stage G7 are given in

Figure 8.

Consider the following extensive-form correlated equilibrium:

• At stage t = 1, the device sends messages e1 and e2 with equal probability.

These messages are observed only by players 1 and 2.

• Upon observing e1, players 1 and 2 play (1
3
T+ 2

3
B, 2

3
L+ 1

3
R), which is a Nash

equilibrium between the two players if player 3 chooses E1.
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E1

L R

T 1, 2, 0 0, 0, 0

B 0, 0, 12 2, 1, 0

E2

L R

T 2, 1, 0 0, 0, 12

B 0, 0, 0 1, 2, 0

E3

L R

T −1,−1, 0 −1,−1, 9

B −1,−1, 9 −1,−1, 0

Figure 8: The two-stage game G7.

• Upon observing e2, players 1 and 2 play (2
3
T+ 1

3
B, 1

3
L+ 2

3
R), which is a Nash

equilibrium between the two players if player 3 chooses E2.

• At stage t = 2, the device recalls its earlier message (either e1 or e2) and informs

player 3 accordingly. Player 3 chooses E1 if the message is e1, and E2 if the

message is e2. This is optimal for her if players 1 and 2 adhere to their strategies,

because 12 · 4
9
> 9 · 5

9
.

This equilibrium is not canonical. In a canonical equilibrium, players 1 and 2 are

merely informed at stage t = 1 about their recommended pure actions. Suppose that

internal messages are prohibited. Then the stage-2 device knows only which of the

four pairs (T,L), (T,R), (B,L), and (B,R) it recommended at stage t = 1. The

respective probability distributions over pairs (a1, a2) are shown in Table I.

By definition, a canonical device cannot give a recommendation to player 3 at stage

t = 1, because player 3 moves only at stage t = 2. But if the device does not inform

player 3 at all, player 3 finds it optimal to choose E3, breaking the equilibrium. Thus,

without internal records, the canonical device needs to apply Bayes’ rule to come up
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with the correct conditional probabilities for recommending actions to player 3.

(a) Conditional on e1

L R

T 2
9

1
9

B 4
9

2
9

(b) Conditional on e2

L R

T 2
9

4
9

B 1
9

2
9

(c) Aggregate

L R

T 2
9

5
18

B 5
18

2
9

Table I: Stage-1 recommendation probabilities.

7 Concluding remarks

We have proposed a simple and tractable solution concept that naturally generalizes

correlated equilibrium to the class of infinitely repeated games. MSPE aligns very well

with subgame perfection, public randomization, and sequential equilibrium, satisfies

an important revelation principle, suggests a natural variant of the effective minimax

value, and leads to straightforward analogues of classic folk theorems. There is no

need to assume that mixed actions are observable. Moreover, necessary and sufficient

conditions for implementability of payoffs apply to any finite stage game.

Key takeaways include that private messaging makes minimax punishments not

only more effective, as has been known before, but also simpler, sequentially rational,

and less reliant on players’ patience. Thus, transparent mediation can benefit players

who rely on the cooperation of others. As we have also seen, this observation extends

in a nontrivial way to situations in which players share equivalent utilities.32

What happens if the requirement of ex-post observability is dropped? Intuition

suggests that our sufficient conditions generalize because, as mentioned before, the

mediator can always commit to disclosing all internal records and private messages

32There are actually two more takeaways. First, the full-dimensionality example in Fudenberg
and Maskin (1986) is robust to the introduction of a public randomization device, which closes a
small but long-standing gap in the literature. Second, internal records kept by the mediator might
play a more important role for the analysis of mediation than suggested by the existing literature.
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at the beginning of the next stage. However, the implications of secrecy for necessary

conditions are less clear. Since a new stage does not necessarily start a new subgame,

there would be some leeway for the mediator to steer players’ subjective beliefs over

past and current message profiles. This might allow the mediator to punish more

effectively, in particular, in games that do not satisfy NEU.

A Appendix

This Appendix contains material omitted from the body of the paper.

A.1 The outcome of mediated play

Given a device µ and a profile of behavior strategies σ, an infinite sequence {(mt, at)}∞t=0

of message and action profiles is determined as follows. Recall that the initial history

is h0 = ∅. Iteratively, for any t ∈ {0, 1, 2, . . .}, draw the message profile mt ∈ M

according to µ(· |ht), draw ati according to σi(· |ht,mt
i), for each player i ∈ N , and

construct the updated history ht+1 = (ht;mt, at) = (m0, a0; . . . ;mt, at). From the in-

finite sequence {(mt, at)}∞t=0, the outcome {at}∞t=0 is obtained by omitting the message

profiles.

Next, fix some player i ∈ N , an information set (h,mi) ∈ Ii, with h = ht ∈ H t,

and a belief βi(· |h,mi) ∈ ∆(M−i) at (h,mi). The infinite continuation sequence

{(mt+τ , at+τ )}∞τ=0 of message and action profiles is determined as follows. First,

let mt
i = mi, draw mt

−i ∈ M−i according to βi(· |h,mi), and draw atj according to

σj(· |h,mt
j), for any player j ∈ N . This determines the pair (mt, at), and the history

ht+1 = (ht;mt, at). Iteratively, for any τ ∈ {1, 2, . . .}, draw mt+τ ∈ M according to

µ(· |ht+τ ), draw at+τ
j according to σj(· |ht+τ ,mt+τ

j ), for each j ∈ N , and construct the

history ht+τ+1 = (ht+τ ;mt+τ , at+τ ). The conditional outcome {at+τ}∞τ=0 is obtained

again from the infinite sequence {(mt+τ , at+τ )}∞τ=0 by omitting the messages.
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A.2 Proof of Lemma 1

(i) Fix the device µ, a player i ∈ N , and the profile of opponents’ behavior strategies

σ−i ∈ Σ−i. Then, at any information set (h,mi) ∈ Ii, player i faces a discounted

decision problem. By the standard one-shot deviation principle (Fudenberg and Ti-

role, 1991), if some deviation σ′
i yields a strictly higher continuation payoff at (h,mi),

there exists a profitable deviation that differs from σi only at a single information

set. Thus, to verify the sequential rationality condition in Definition 1, it suffices to

check one-shot deviations.

(ii) Let θt ∈ [0, 1] denote the public signal drawn in stage t ∈ {0, 1, . . .}. Focus

on stage t = 0. For any signal θ0 ∈ [0, 1], the SPE in the repeated game in-

duces a payoff profile V (θ0) = (V1(θ
0), . . . , Vn(θ

0)) ∈ Rn. Let V0 = {V (θ0) | θ0 ∈

[0, 1]} ⊆ Rn denote the set of payoff profiles obtained that way. Then, the SPE

payoff profile V ∗ = (V ∗
1 , . . . , V

∗
n ) = E[V (θ0)] is an element of the convex hull of V0.

Thus, by Carathéodory’s Theorem (Rockafellar, 1970, Thm. 17.1), there are signals

θ01, . . . , θ
0
n+1 ∈ [0, 1] and weights λ1, . . . , λn+1 ≥ 0 with

∑n+1
κ=1 λκ = 1, such that

V ∗
i =

n+1∑
κ=1

λκVi(θ
0
κ),

for all i ∈ N . Hence, we may replace the public randomization device at stage t =

0, without affecting expected continuation payoffs or sequential rationality at stage

t = 0, by an autonomous device using identical sets M1 = . . . = Mn = {1, . . . , n+ 1}

and sending the message profile (κ, . . . , κ) ∈ M with probability λκ. This defines

an infinitely repeated game G0 in which the public randomization device has been

replaced by a finite device at stage t = 0. Applying the same reduction iteratively for

any history ht, we can construct, for any horizon T ≥ 1, an infinitely repeated game

GT in which the public randomization device has been replaced by a finite device in
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all stages t ≤ T . Consider now the limit game G∞, in which this replacement has

been done at all stages, and the corresponding limit strategy profile. We need to

check that no player has an incentive to deviate in G∞. Suppose that a one-shot

deviation in G∞ is profitable at some stage t. Given boundedness of payoffs, the

respective continuation payoffs resulting from equilibrium play and deviation in G∞

are arbitrarily close to the corresponding continuation payoffs in GT , as T → ∞.

Hence, we can find a horizon T > t such that the same deviation is profitable in GT ,

which is impossible. Thus, a deviation is not profitable.

(iii) For any regular history h ∈ H, let µ̃(· |h) = µ(· |h). For any irregular history

h ∈ H, there is a first stage at which the irregularity becomes public information.

Exploiting the stationary nature of the infinitely repeated game, the device is then

programmed to “reset” itself by erasing the irregular initial segment of its history. If

necessary, this procedure is repeated until all inconsistencies are resolved. Formally,

for any history ht ∈ H, we define the last “reset” stage τ(t) ≡ τ(ht) recursively as

follows. Let τ(0) = 0. Further, for t ≥ 0, let τ(t+ 1) = τ(t) if appending (mt, at) to

the history

ht\hτ(t) ≡
(
mτ(t), aτ(t); . . . ;mt−1, at−1

)
∈ H t−τ(t).

creates a regular history ht+1\hτ(t), and let τ(t+ 1) = t+ 1 otherwise, in which case

ht+1\hτ(t+1) = ∅. In the MSPE that we construct, the device, beliefs, and strategies

are evaluated at the regular history ht\hτ(t) rather than at the original history ht.

Formally, we define a new device µ̃ : H → ∆(M) by µ̃(· |ht) = µ(· |ht\hτ(t)), for all

ht ∈ H. Similarly, for each player i ∈ N and any messagemt
i such that µ̃i(m

t
i |ht) > 0,

let σ̃i(· |ht,mt
i) = σi(· |ht\hτ(t),mt

i). Further, at any information set (ht,mt
i) with

µ̃i(m
t
i |ht) = 0, choose β̃i(· |ht,mt

i) arbitrarily and let σ̃i(· |ht,mt
i) place probability

one on some pure best response to the correlated action profile α−i ∈ ∆(A−i) induced
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by β̃i(· |ht,mt
i) ∈ ∆(M−i) and the profile of behavior strategies σ̃−i in the stage game.

Finally, define beliefs β̃i at information sets with µ̃i(m
t
i |ht) > 0 by Bayes’ rule from

µ̃. Noting that, after any zero-probability message for some player, the next stage

“resets” the history to ∅ regardless of the player’s action, it is now immediate from

the construction that (µ̃, β̃, σ̃) is an MSPE that is outcome equivalent to (µ, β, σ).

(iv) Let α∗ ∈ ∆(A) be a correlated equilibrium in the stage game G. To define an

MSPE, let player i’s message set be given as Mi = suppαi ⊆ Ai, for each i ∈ N .

Next, let µ(· |h) = α∗(·) for any h ∈ H. For any player i ∈ N and information

set (h,mi) ∈ Ii, define the belief βi(· |h,mi) ∈ ∆(M−i) by Bayes’ rule. Further, let

σi(· |h,mi) ∈ ∆(Ai) give full weight on mi. Then, sequential rationality for player i

at the information set (h,mi) follows directly from the optimality condition for player

i in the correlated equilibrium α∗. The existence claim is now immediate. □

A.3 Proof of Theorem 1

Take an arbitrary MSPE (µ, β, σ). For any history ht = (m0, a0; . . . ;mt−1, at−1) ∈ H t,

define the joint distribution over message and action profiles µ̃(· |ht) ∈ ∆(M × A)

induced at ht by

µ̃(mt, at |ht) = µ(mt |ht) ·
∏
i∈N

σi(a
t
i |ht,mt

i).

Further, let µ̃a(· |h) ∈ ∆(A) and µ̃i(· |h) ∈ ∆(Mi × Ai), respectively, denote the

marginals of µ̃(· |h) on A and Mi × Ai. Let Ĥ t be the set of canonical histories of

length t, with typical element ĥt = (â0, a0; . . . ; ât−1, at−1), and let St be the set of

states of length t, with typical element st = (m0, . . . ,mt−1). Conditioning on the

public action record (a0, . . . , at−1) contained in the canonical history ĥt, Bayesian

uncertainty concerns only the latent message history st. Keeping this in mind, the

probability that the canonical history ĥt ∈ Ĥ t and the state st ∈ St obtain jointly is
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given by the product

pr(ĥt, st) =
t−1∏
τ=0

µ̃(mτ , âτ |hτ ),

where hτ = (m0, a0; . . . ;mτ−1, aτ−1) is the corresponding history of length τ , built

from sτ and the record of chosen actions contained in ĥt. Moreover, the probability

that ĥt obtains is

pr(ĥt) =
∑
st∈St

pr(ĥt, st),

while the probability that ĥt and ât obtain jointly is

pr(ĥt, ât) =
∑
st∈St

pr(ĥt, st) µ̃a(â
t |ht),

where ht is derived from st and ĥt as explained above. We specify a direct MSPE

candidate (µ̂, β̂, σ̂) as follows. For any ĥt ∈ Ĥ t with pr(ĥt) > 0, and any ât ∈ A, let

µ̂(ât | ĥt) =
pr(ĥt, ât)

pr(ĥt)
.

If pr(ĥt) = 0, define µ̂(· | ĥt) arbitrarily. For each i ∈ N , define beliefs β̂i(· | ĥt, âti)

by Bayes’ rule from µ̂ whenever µ̂i(â
t
i | ĥt) > 0, and choose β̂i arbitrarily otherwise.

Further, define σ̂i(· | ĥt, âti) to put full weight on ai = âti. We verify sequential ratio-

nality, we may restrict attention to one-shot deviations at regular information sets.

Fix a canonical information set (ĥt, âti) for some player i ∈ N . Similar to the above,

consider joint probabilities

pr(st,mt
i, ĥ

t, âti) = pr(st, ĥt)µi(m
t
i |ht)σi(â

t
i |ht,mt

i),

pr(ĥt, âti) =
∑
st∈St

∑
mt

i∈Mi

pr(st,mt
i, ĥ

t, âti).

Assume that the information set (ĥt, âti) is regular, i.e., that pr(ĥt, âti) > 0. Then,

conditional on (ĥt, âti), player i’s posterior pr(· | ĥt, âti) ∈ ∆(St ×Mi) over the latent
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state st and the current message mt
i is given by

pr(st,mt
i | ĥt, âti) =

pr(st,mt
i, ĥ

t, âti)

pr(ĥt, âti)
.

Then, from the definition of the continuation outcome (cf. Section A.1),

Ui(σ̂ | ĥt, âti) =
∑
st∈St

∑
mt

i∈Mi

pr(st,mt
i | ĥt, âti)Ui(σ |ht,mt

i).

Let σ̂′
i denote the one-shot deviation that chooses a′i ∈ Ai at (ĥt, âti) and coincides

with σ̂i thereafter. With σ′
i defined analogously at (ht,mt

i), we obtain

Ui(σ̂
′
i, σ̂−i | ĥt, âti) =

∑
st∈St

∑
mt

i∈Mi

pr(st,mt
i | ĥt, âti)Ui(σ

′
i, σ−i |ht,mt

i).

Now, whenever pr(st,mt
i | ĥt, âti) > 0, we have σi(â

t
i | ht,mt

i) > 0, so choosing âti

does not affect the continuation payoff at (ht,mt
i). Sequential rationality of (µ, β, σ)

implies

Ui(σi, σ−i |ht,mt
i) ≥ Ui(σ

′
i, σ−i |ht,mt

i),

for any ht and any mt
i. Averaging with respect to the posterior pr(· | ĥt, âti), we obtain

Ui(σ̂i, σ̂−i | ĥt, âti) ≥ Ui(σ̂
′
i, σ̂−i | ĥt, âti).

Thus, (µ̂, β̂, σ̂) is indeed sequentially rational at all regular information sets. We

check outcome equivalence. By definition, µ̂(· | ĥt) follows exactly the distribution

of the recommendation ât obtained from µ̃ once the message history st is integrated

out. Hence the stochastic process of recommended action profiles {ât}t≥0 induced

by µ̂ coincides with the process of action profiles generated by µ and σ. Under

obedience, at = ât for all t on the equilibrium path, so the outcome is indeed the

same as under (µ, β, σ). By Lemma 1(iii), there exists an outcome-equivalent MSPE.

By construction, that MSPE is direct and reflects obedience to any regular message.

□
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A.4 Proof of Lemma 2

(i) The inequality vindi ≤ wind
i is immediate from the definitions. To prove vcori ≤ wcor

i ,

let α ∈ ∆(A). Then, since ∼ is reflexive,

Eαi

[
max
a′i∈Ai

Eα[ui(a
′
i, a−i)| ai]

]
≤ max

j∈N
s.t. j∼i

Eαj

[
max
a′j∈Aj

Eα[ui(a
′
j, a−j)

∣∣ aj]] , (A.1)

where αi denotes the marginal distribution of α on Ai, as before. Next, keeping

ai ∈ Ai fixed, the conditional distribution of a−i is certainly an element of ∆(A−i).
33

Hence,

max
a′i∈Ai

Eα[ui(a
′
i, a−i)| ai] ≥ min

α̃−i∈∆(A−i)
max
a′i∈Ai

Eα̃−i
[ui(a

′
i, a−i)] = vcori .

Taking the expectation with respect to αi yields

Eαi

[
max
a′i∈Ai

Eα[ui(a
′
i, a−i)| ai]

]
≥ vcori .

Combining this with (A.1) and subsequently taking the minimum over all α ∈ ∆(A)

shows that, indeed, wcor
i ≥ vcori . This proves the horizontal inequalities. As for the

vertical inequalities, vcori ≤ vindi is again obvious. To prove that wcor
i ≤ wind

i , note

that for any product distribution α ∈×k∈N ∆(Ak) and any a′j ∈ Aj,

Eα[ui(a
′
j, a−j)

∣∣ aj] = Eα−j
[ui(a

′
j, a−j)],

because a−j is independent of aj. Therefore,

wcor
i = min

α∈∆(A)
max
j∈N

s.t. j∼i

Eαj

[
max
a′j∈Aj

Eα[ui(a
′
j, a−j)

∣∣ aj]]

≤ min
α∈×k∈N ∆(Ak)

max
j∈N

s.t. j∼i

Eαj

[
max
a′j∈Aj

Eα−j
[ui(a

′
j, a−j)]

]
33In line with our earlier convention (see Fn. 23), this conditional distribution is the marginal on

A−i if αi assigns probability zero to ai.
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= min
α∈×k∈N ∆(Ak)

max
j∈N

s.t. j∼i

max
a′j∈Aj

Eα−j
[ui(a

′
j, a−j)]

= wind
i ,

which proves the claim.

(ii) If G satisfies NEU, player i’s equivalence class is a singleton. Hence,

wind
i = min

α∈×k∈N ∆(Ak)
max
j∈N

s.t. j∼i

max
a′j∈Aj

Eα−j
[ui(a

′
j, a−j)]

= min
α∈×k∈N ∆(Ak)

max
a′i∈Ai

Eα−i
[ui(a

′
i, a−i)]

= vindi .

Hence, wind
i = vindi , as has been claimed. Similarly,

wcor
i = min

α∈∆(A)
max
j∈N

s.t. j∼i

Eαj

[
max
a′j∈Aj

Eα[ui(a
′
j, a−j) | aj]

]

= min
α∈∆(A)

Eαi

[
max
a′i∈Ai

Eα[ui(a
′
i, a−i) | ai]

]
.

Let αcor
−i ∈ ∆(A−i) attain vcori , i.e., maxa′i∈Ai

Eαcor
−i
[ui(a

′
i, a−i)] = vcori . Select some

α̃i ∈ ∆(Ai), and define the product distribution α = α̃i ⊗ αcor
−i ∈ ∆(A). Then, the

marginal of α on Ai is αi = α̃i. Therefore,

vcori = Eα̃i

[
max
a′i∈Ai

Eαcor
−i
[ui(a

′
i, a−i)]

]
= Eαi

[
max
a′i∈Ai

Eα[ui(a
′
i, a−i) | ai]

]
.

Taking the minimum over all α ∈ ∆(A) shows that wcor
i ≤ vcori . Together with part

(i), this yields wcor
i = vcori .

(iii) For n = 2, vindi = vcori is obvious. We claim that wind
i = wcor

i . By part (i), it

suffices to show wcor
i ≥ wind

i . Note that

Eαj

[
max
a′j∈Aj

Eα[ui(a
′
j, a−j) | aj]

]
≥ max

a′j∈Aj

Eαj

[
Eα[ui(a

′
j, a−j) | aj]

]
= max

a′j∈Aj

Eα−j
[ui(a

′
j, a−j)],
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for any α ∈ ∆(A) and any j ∈ N . Taking first the maximum over all j ∈ N such

that j ∼ i and, subsequently, the minimum over all α ∈ ∆(A) on both sides yields

wcor
i ≥ min

α∈∆(A)
max
j∈N

s.t. j∼i

max
a′j∈Aj

Eα−j
[ui(a

′
j, a−j)].

But, since n = 2, α−j is just a mixed action, so that the RHS equals

min
(α1,α2)∈∆(A1)×∆(A2)

max
j∈N

s.t. j∼i

max
a′j∈Aj

Eα−j
[ui(a

′
j, a−j)] = wind

i .

This establishes the last part and, hence, the lemma. □

A.5 Details on Example 2

To determine the non-effective minimax values, suppose that player 2 chooses a2 = F,

and that player 3 chooses a3 = S. Then, player 1’s payoff is zero, and this is player 1’s

minimal feasible payoff. Hence, vind1 = vcor1 = 0.

Next, in the effective independent minimax problem, let αi denote the probability

that player i chooses F. By symmetry, we may assume w.l.o.g. that α1 ≥ α2 ≥ α3.

If α2 ≥ 1
3
, then player 3 has a payoff of at least 4

9
from choosing F. Otherwise, i.e.,

if α2 < 1
3
, then player 1 has a payoff of at least 4

9
from choosing S. Conversely, if

α1 = α2 = α3 =
1
3
, then all players obtain a payoff of 4

9
.

Finally, let pa1a2a3 denote the probability of (a1, a2, a3) ∈ A under some α ∈ ∆(A).

For player 1, the maximum deviation payoff obtainable under α equals

Φ1(α) = max{4pFFF, pFSS} + max{4pSFF, pSSS} .

Analogous expressions obtain for players 2 and 3 by permuting indices, so that

wcor
1 = minα∈∆(A) max{Φ1(α),Φ2(α),Φ3(α)}. Note that the objective function of the

minimization problem is convex. Given symmetry, we may therefore restrict attention

to distributions α satisfying pFSS = pSFS = pSSF and pFFS = pFSF = pSFF. Hence, it
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suffices to minimize Φ1(α) subject to nonnegativity constraints and

pFFF + 3pFSS + 3pSFF + pSSS = 1.

It is clearly optimal to set pFSS = 4pFFF and pSSS = 4pSFF. The problem now reads

min
pFFF,pSFF

s.t.13pFFF+7pSFF=1

4pFFF + 4pSFF .

This yields pFFF = 1
13

and pSFF = 0. Hence, pFSS = 4
13

and pSSS = 0, so that the

symmetric distribution stated in Example 2 is indeed optimal. Moreover, wcor
1 = 4

13
.

A.6 Proof of Theorem 2

We will make use of the following auxiliary result.

Lemma A.1. Given α ∈ ∆(A), let αi ∈ ∆(Ai) denote the marginal of α on Ai.

Then, the mapping

α 7→ Eαi

[
max
a′i∈Ai

Eα[ui(a
′
i, a−i) | ai]

]
is continuous on ∆(A).

Proof. Given the probability distribution α ∈ ∆(A), let αi(ai) and α(ai, a−i), respec-

tively, denote the marginal probability of the action ai ∈ Ai and the probability of

the action profile (ai, a−i) ∈ A. Then,

Eαi

[
max
a′i∈Ai

Eα[ui(a
′
i, a−i) | ai]

]
=

∑
ai∈Ai

s.t. αi(ai)>0

αi(ai) · max
a′i∈Ai

∑
a−i∈A−i

α(ai, a−i)

αi(ai)
ui(a

′
i, a−i)

=
∑
ai∈Ai

max
a′i∈Ai

∑
a−i∈A−i

α(ai, a−i)ui(a
′
i, a−i), (A.2)

because αi(ai) = 0 implies α(ai, a−i) = 0 for all a−i ∈ A−i. Since the maxima on the

RHS of equation (A.2) are continuous as functions of α, this proves the lemma.
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To prove the non-bracketed part of the theorem, we assume w.l.o.g. that uj = ui for all

players j ∼ i. Let (µ, β, σ) be an MSPE. By Theorem 1, we may assume that (µ, β, σ)

is canonical. Then, in stage t = 0, message profiles are drawn from A according to

the probability distribution µ0 ≡ µ(· |∅) ∈ ∆(A). By player i’s optimality condition

at her information set (∅, âi) corresponding to the recommended action âi ∈ Ai at

stage t = 0, player i’s expected continuation payoff satisfies

Ui(σ |∅, âi) ≥ (1− δ) max
a′i∈Ai

Eµ0 [ui(a
′
i, a−i) | âi] + δLi,

where Li denotes the infimum of player i’s expected payoffs across all MSPE. Since

an MSPE exists by Lemma 1, Li is finite. Further, from stationarity of the game, the

continuation at any stage t induces an MSPE in the subgame, so that any continuation

payoff is at least Li. Let µ0
i ∈ ∆(Ai) denote the marginal distribution of µ0 on Ai.

Taking expectations over âi according to µ0
i shows that i’s expected payoff resulting

from (µ, β, σ) satisfies

Ui(σ) ≥ (1− δ)Eµ0
i

[
max
a′i∈Ai

Eµ0 [ui(a
′
i, a−i) | âi]

]
+ δLi.

Consider now a sequence {(µν , βν , σν)}∞ν=0 of MSPE with player i’s equilibrium payoff

converging to Li. Without loss of generality, we replace {(µν , βν , σν)}∞ν=0 by a subse-

quence such that the corresponding sequence of µν,0 ≡ µν(· |∅) ∈ ∆(A) converges as

well. Then, we may replace (µ, β, σ) by (µν , βν , σν) in the above derivation. Taking

the limit ν → ∞ and subsequently rearranging yields, in view of Lemma A.1,

Li ≥ Eµ0
i

[
max
a′i∈Ai

Eµ0 [ui(a
′
i, a−i)| âi]

]
.

For any j ∈ N such that j ∼ i, the above inequality holds for the same limit distri-

bution µ0 when i is replaced by j. Hence,

Li = Lj ≥ Eµ0
j

[
max
a′j∈Aj

Eµ0

[
ui(a

′
j, a−j)

∣∣ âj]] .
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It follows that

Li ≥ max
j∈N

s.t. j∼i

Eµ0
j

[
max
a′j∈Aj

Eµ0

[
ui(a

′
j, a−j) | âj

]]
.

Recalling that µ0 ∈ ∆(A) is just a correlated action profile shows that indeed Li ≥

wcor
i , proving the non-bracketed claim. The bracketed claim is due to Wen (1994,

Thm. 1). This completes the proof. □

A.7 Proof of Theorem 3

The bracketed claim is Wen (1994, Thm. 2). Next, we prove the non-bracketed claim.

We assume w.l.o.g. that wcor
i = 0 for all i ∈ N . We make use of the following auxiliary

result.

Lemma A.2 (Abreu et al., 1994). Let v = (v1, . . . , vn) ∈ V such that vi > 0 for all

i ∈ N . Then, there exist payoff profiles v1, . . . , vn ∈ V that satisfy:

(i) vji > 0 for all i, j ∈ N ;

(ii) vi > vii, for all i ∈ N ;

(iii) vii < vji , for all i, j ∈ N such that i ̸∼ j.

Proof. (Sketch) Select one representative from each equivalence class of players and

apply the construction in Abreu et al. (1994, p. 942) to the feasible set for the reduced

player set to obtain payoff vectors with the required strict inequalities. Subsequently,

assign each player i the respective vectors of her equivalence class. For details, see

Wen (1994, p. 952).

We now prove the theorem. Take a payoff profile v = (v1, . . . , vn) ∈ V , such that

vi > 0 for all i ∈ N . By feasibility, there is some distribution α ∈ ∆(A) such that

ui(α) ≡ Eα[ui(a)] = vi for all i ∈ N . Let αi
∗ ∈ ∆(A) be an effective correlated
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minimax distribution against (the equivalence class of) player i, i.e., a solution to the

minimization problem that defines wcor
i . Finally, for each i ∈ N , let αi

∗∗ ∈ ∆(A) be a

correlated action profile that implements vi, as identified in Lemma A.2. W.l.o.g., if

i ∼ j, we take αi
∗ = αj

∗ and vi = vj, hence also αi
∗∗ = αj

∗∗, so that punishment paths

depend only on the deviator’s equivalence class. For a given discount factor δ ∈ (0, 1)

and positive integer T , we will now characterize a canonical MSPE. By Lemma 1(iii),

it suffices to specify the components of the MSPE for regular histories h. At any

regular history, recommendations made by the device are necessarily regular and,

hence, the obedience of players at former stages is common knowledge among the

players and the device.

Phase A. If in every prior stage either all players have been obedient or at least

two players have been disobedient, then µ(h) = α.

Phase B. If, in some prior stage precisely one player has been disobedient, player

i has been the last such deviator, and this happened at most T stages before, then

µ(h) = αi
∗.

Phase C. If, in any prior stage, precisely one player has been disobedient, player

i has been the last such deviator, and this happened more than T stages ago, then

µ(h) = αi
∗∗.

It is now standard to show (e.g., Wen, 1994, pp. 952-953) that there exists an integer

T ≫ 0 and some δ ∈ (0, 1) such that, for any δ ∈ (δ, 1), no player i ∈ N has an

incentive to deviate in phase A, and no player j ∈ N , whether equivalent to the last

deviator i or not, has an incentive to deviate in phases B or C. Therefore, the profile

above can be completed to an MSPE with expected payoff profile v. □
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A.8 Proof of Lemma 3

We only prove that wcor
1 = 1

4
. Let pa1a2a3 ∈ [0, 1] denote the probability that the

triple (a1, a2, a3) ∈ A is chosen. We seek to minimize

Φ(α) = max


max{pFFF, pFSS}+max{pSFF, pSSS},
max{pFFF, pSFS}+max{pFSF, pSSS},
max{pFFF, pSSF}+max{pFFS, pSSS}

 ,

subject to the probability simplex constraints. We note that Φ(·) is convex and

symmetric with respect to both arbitrary permutations of the set of players and a

simultaneous swap of F and S in all three action spaces. Hence, we may restrict

attention to solutions satisfying pFFF = pSSS and

pFFS = pFSF = pSFF = pFSS = pSFS = pSSF.

But then, Φ(α) = 2max{pFFF, pFSS}, which indeed has 1
4
as its minimum. □

A.9 Proof of Theorem 4

The bracketed claim is due to Friedman (1971). We prove the non-bracketed claim.

Fix v = (v1, . . . , vn) ∈ V with vi > ui(α
∗) for all i ∈ N . Choose α ∈ ∆(A) such that

Eα[u] = v. For any canonical history ht = (â0, a0; . . . ; ât−1, at−1), let

µ(· |ht) =

{
α, if aτ = âτ for all τ < t,

α∗, otherwise.

As has been explained in Section 2, it suffices to check that being obedient is sequen-

tially rational at any regular information set (ht, âti). If ht documents a deviation,

then µ(· |ht) = α∗ and this remains true in future stages. Hence, a one-shot de-

viation affects only the current payoff. Since α∗ is a correlated equilibrium, and

µi(âi |ht) > 0 (from regularity), being obedient is sequentially rational in this case.

If ht documents no deviation, then µ(· |ht) = α. As a deviation changes the regime

and Eα∗ [ui(a)] < Eα[ui(a)], being obedient is sequentially rational for player i also in

this case, if δ is sufficiently close to one. This proves the claim. □
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